It is difficult to introduce long genomic DNA molecules into nanometer scale fluidic channels directly from the macroscale world because of the steep entropic barrier caused by necessary stretching of the polymer. We present a very simple technique using optical lithography to fabricate continuous spatial gradient structures which smoothly narrow the cross section of a volume from the micron to the nanometer length scale, greatly reducing the local entropic barrier to nanochannel entry. This technique, diffraction gradient lithography, can be very valuable for the fabrication of micro/nano total analysis systems.
REFERENCES
1.
R. H.
Austin
, J. O.
Tegenfeldt
, H.
Cao
, S. Y.
Chou
, and E. C.
Cox
, IEEE Trans. Nanotech.
1
, 12
(2002
).2.
3.
4.
O. B.
Bakajin
, T. A. J.
Duke
, C.-F.
Chou
, S. S.
Chan
, R. H.
Austin
, and E. C.
Cox
, Phys. Rev. Lett.
80
, 2737
(1998
).5.
H.
Cao
, Z.
Yu
, J.
Wang
, J. O.
Tegenfeldt
, R. H.
Austin
, E.
Chen
, W.
Wu
, and S. Y.
Chou
, Appl. Phys. Lett.
81
, 174
(2002
).6.
Z. N.
Yu
, P.
Deshpande
, W.
Wu
, J.
Wang
, and S. Y.
Chou
, Appl. Phys. Lett.
77
, 927
(2000
).7.
M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light VIII Elements of The Theory of Diffraction Cambridge University Press, Cambridge, UK, (1999), p. 1, 412.
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.