First-principles total-energy calculations suggest that interstitial hydrogen impurity forms a shallow donor in SnO2, CdO, and ZnO, but a deep donor in MgO. We generalize this result to other oxides by recognizing that there exist a “hydrogen pinning level” at about 3.0±0.4 eV below vacuum. Materials such as Ag2O, HgO, CuO, PbO, PtO, IrO2,RuO2,PbO2,TiO2,WO3,Bi2O3,Cr2O3,Fe2O3,Sb2O3,Nb2O5,Ta2O5,FeTiO3, and PbTiO3, whose conduction band minimum (CBM) lie below this level (i.e., electron affinity>3.0±0.4 eV) will become conductive once hydrogen is incorporated into the lattice, without reducing the host. Conversely, materials such as BaO, NiO, SrO, HfO2, and Al2O3, whose CBM lie above this level (i.e., electron affinity<3.0±0.4 eV) will remain nonconductive since hydrogen forms a deep impurity.

1.
S. K.
Estreicher
,
Mater. Sci. Eng., R.
14
,
319
(
1995
).
2.
S.
Samson
and
C. G.
Fonstad
,
J. Appl. Phys.
44
,
4618
(
1973
).
3.
C. G.
Van de Walle
,
Phys. Rev. Lett.
85
,
1012
(
2000
).
4.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
);
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
5.
J.
Ihm
,
A.
Zunger
, and
M. L.
Cohen
,
J. Phys. C
12
,
4409
(
1979
).
6.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
);
The computational settings for SnO2 were the same as in a previous publication [
Ç.
Kılıç
and
A.
Zunger
,
Phys. Rev. Lett.
88
,
095501
(
2002
)];
For CdO and MgO, we used cubic supercells consisting of 64 atoms, formed by eight primitive unitcells of rocksalt structure.
The cadmium (s2d10p0), magnesium (s2p0), and oxygen (s2p4), and hydrogen (s1) atoms were modeled using ultrasoft pseudopotentials [
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
)].
The plane wave basis sets were determined by imposing a kinetic energy cutoff of 396 eV.
The Brillouin zone of the supercells was sampled by a 2×2×2k-point mesh generated according to Monkhorst–Pack scheme [
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
)].
For charged systems, a jellium background was used, and the total energy was corrected to O(L−5) where L is the supercell size [
G.
Makov
and
M. C.
Payne
,
Phys. Rev. B
51
,
4014
(
1995
)].
7.
The calculated (direct) band gaps of MgO (rocksalt), CdO (rocksalt), and SnO2 (rutile) are 5.2, 1.2, and 1.2, respectively, compared to measured values of 7.8 eV for MgO [
R. C.
Whited
,
C. J.
Flaten
, and
W. C.
Walker
,
Solid State Commun.
13
,
1903
(
1973
)];
2.4 eV for CdO [
T. K.
Subramanyama
,
G. M.
Raob
, and
S.
Uthanna
,
Mater. Chem. Phys.
69
,
133
(
2001
)], and
3.6 eV for SnO2 [
Z. M.
Jarzebski
and
J. P.
Marton
,
J. Electrochem. Soc.
123
,
333C
(
1976
)].
The calculated (indirect) band gap of CdO is −0.4 compared to measured value of 0.8 eV [
F. P.
Koffyberg
,
Phys. Rev. B
13
,
4470
(
1976
).
8.
A.
Yokozawa
and
Y.
Miyamoto
,
Phys. Rev. B
55
,
13783
(
1997
).
9.
Following earlier theoretical work [
P. A.
Sterne
and
J. C.
Inkson
,
J. Phys. C
17
,
1497
(
1984
);
K. A.
Johnson
and
N. W.
Aschcroft
,
Phys. Rev. B
58
,
15548
(
1998
)];
we add a correction term λρ1/3(r)+C to the crystal potential for conduction electrons and −λρ1/3(r)+C for valence electrons, where ρ(r) denotes the charge density. We determine the constant λ by adjusting the calculated band gap to the experimental value, and C by assuming that the LDA total energy of the ideal solid is unaltered. The formation energies are corrected by adding the shift in CBM to the total energy if the electrons occupying states derived from hydrogen are relaxed to the CBM. An interpolation between VBM and CBM shifts is made for the gap states.
10.
S. F. J.
Cox
,
E. A.
Davis
,
P. J. C.
King
,
J. M.
Gil
,
H. V.
Alberto
,
R. C.
Vilao
,
J.
Piroto Duarte
,
N. A.
de Campos
, and
R. L.
Lichti
,
J. Phys.: Condens. Matter
13
,
9001
(
2001
).
11.
J.
Neugebauer
and
C. G.
Van de Walle
,
Phys. Rev. Lett.
75
,
4452
(
1995
).
12.
M.
Caldas
,
A.
Fazzio
, and
A.
Zunger
,
Appl. Phys. Lett.
45
,
671
(
1984
);
A. Zunger, in Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York, 1986), Vol. 39, p. 275.
13.
M. A.
Butler
and
D. S.
Ginley
,
J. Electrochem. Soc.
125
,
228
(
1978
).
14.
L. H.
Tjeng
,
A. R.
Vos
, and
G. A.
Sawatzky
,
Surf. Sci.
235
,
269
(
1990
).
15.
W. R. L.
Lambrecht
,
S.
Limpijumnong
, and
B.
Segall
,
MRS Internet J. Nitride Semicond. Res.
4S1
,
G6
(
1999
).
16.
W. Schmickler and J. W. Schultze, in Modern Aspects of Electrochemistry, edited by J. O’M. Bockris, B. E. Conway, and R. E. White (Plenum, New York, 1986), No. 17, p. 357.
17.
Our pinning rule predicts H to be a shallow donor in HgO. The muonium-derived donor level is measured (Ref. 11) at ECBM−0.14 eV, i.e. below the CBM. We think this difference could arise from the formation of a bound state following the relaxation of electrons released by H donor into the CBM. The binding energy reflects the screened, long-range Coulomb interaction that is absent in our relatively small supercell calculations.
18.
A.
Azens
,
A.
Hjelm
,
D.
Le Bellac
,
C. G.
Granqvist
,
J.
Barczynska
,
E.
Pentjuss
,
J.
Gabrusenoks
, and
J. M.
Wills
,
Solid State Ionics
86
,
943
(
1996
).
19.
C. H.
Park
and
D. J.
Chadi
,
Phys. Rev. Lett.
84
,
4717
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.