A theoretical investigation of electron dynamics in superlattice InGaAs/AlInAs quantum cascade lasers (QCLs) is presented, based on a Monte Carlo simulation that includes both electron–electron and electron–phonon scattering. Nonequilibrium phonons and phonon quantization effects have been explicitly considered. Calculated luminescence and gain spectra are presented. Our analysis provides a clear physical insight into the QCL operational mode.

1.
J.
Faist
,
F.
Capasso
,
D. L.
Sivco
,
C.
Sirtori
,
A. L.
Hutchinson
, and
A. Y.
Cho
,
Science
264
,
553
(
1994
).
2.
G.
Scamarcio
,
F.
Capasso
,
C.
Sirtori
,
J.
Faist
,
A. L.
Hutchinson
,
D. L.
Sivco
, and
A. Y.
Cho
,
Science
276
,
773
(
1997
).
3.
A.
Tredicucci
,
F.
Capasso
,
C.
Gmachl
,
D. L.
Sivco
,
A. L.
Hutchinson
,
A. Y.
Cho
,
J.
Faist
, and
G.
Scamarcio
,
Appl. Phys. Lett.
72
,
2388
(
1998
).
4.
For a recent review, see
F.
Capasso
,
A.
Tredicucci
,
C.
Gmachl
,
D. L.
Sivco
,
A. L.
Hutchinson
,
A. Y.
Cho
, and
G.
Scamarcio
,
IEEE J. Sel. Top. Quantum Electron.
5
,
792
(
1999
).
5.
S.
Tortora
,
F.
Compagnone
,
A.
Di Carlo
,
P.
Lugli
,
M. T.
Pellegrini
,
M.
Troccoli
, and
G.
Scamarcio
,
Physica B
272
,
219
(
1999
).
6.
S.
Tortora
,
F.
Compagnone
,
A.
Di Carlo
, and
P.
Lugli
,
Physica E (Amsterdam)
7
,
20
(
2000
).
7.
R.
Fuchs
and
K. L.
Kliewer
,
Phys. Rev.
140
,
A2076
(
1965
).
8.
F. Compagnone, A. Di Carlo, and P. Lugli (unpublished).
9.
A Krönig–Penney model with an energy-dependent effective mass was used. The most relevant materials parameters used for the simulations are ΔEc (conduction-band discontinuity)=0.52 eV, me*(InGaAs)=0.043m0,me*(InAlAs)=0.078m0. Nonparabolicity was treated following
D.
Mukherji
and
B. R.
Nag
,
Phys. Rev. B
12
,
4338
(
1975
). The nonparabolicity coefficient in InGaAs is γ=1.13×10−14cm2.
10.
G.
Scamarcio
,
F.
Capasso
,
J.
Faist
,
C.
Sirtori
,
D. L.
Sivco
,
A. L.
Hutchinson
, and
A. Y.
Cho
,
Appl. Phys. Lett.
70
,
1796
(
1997
).
11.
M.
Troccoli
,
G.
Scamarcio
,
V.
Spagnolo
,
A.
Tredicucci
,
C.
Gmachl
,
F.
Capasso
,
D. L.
Sivco
,
A. Y.
Cho
, and
M.
Striccoli
,
Appl. Phys. Lett.
77
,
1088
(
2000
).
12.
For a review on the Monte Carlo method, see C. Jacoboni and P. Lugli, in The Monte Carlo Method for Semiconductor Device Simulation, edited by S. Selberherr (Springer, Wien, 1989), pp. 23–64 and 104–138.
This content is only available via PDF.
You do not currently have access to this content.