Conventional macroscopic impact ionization models which use the average carrier energy as a main parameter can not accurately describe the phenomenon in modern miniaturized devices. Here, we present a model which is based on an analytic expression for the distribution function. In particular, the distribution function model accounts explicitly for a hot and a cold carrier population in the drain region of metal–oxide–semiconductor transistors. The parameters are determined by three-even moments obtained from a solution of a six-moments transport model. Together with a nonparabolic description of the density of states, accurate closed form macroscopic impact ionization models can be derived based on familiar microscopic descriptions.

1.
T.
Grasser
,
H.
Kosina
, and
S.
Selberherr
,
J. Appl. Phys.
90
,
6165
(
2001
).
2.
T.
Grasser
,
H.
Kosina
,
M.
Gritsch
, and
S.
Selberherr
,
J. Appl. Phys.
90
,
2389
(
2001
).
3.
E.
Kane
,
J. Phys. Chem. Solids
1
,
249
(
1957
).
4.
K.
Sonoda
,
S. T.
Dunham
,
M.
Yamaji
,
K.
Taniguchi
, and
C.
Hamaguchi
,
Jpn. J. Appl. Phys., Part 1
35
,
818
(
1996
).
5.
L.
Keldysh
,
Sov. Phys. JETP
21
,
1135
(
1965
).
6.
D.
Cassi
and
B.
Riccò
,
IEEE Trans. Electron Devices
37
,
1514
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.