AlGaN/GaN high electron mobility transistors (HEMTs) with different gate length and widths were irradiated with Co60 γ-rays to doses up to 600 Mrad. Little measurable change in dc performance of the devices was observed for doses lower than 300 Mrad. At the maximum dose employed, the forward gate current was significantly decreased, with an accompanying increase in reverse breakdown voltage. This is consistent with a decrease in effective carrier density in the channel as a result of the introduction of deep electron trapping states. The threshold voltage shifted to more negative voltages as a result of the irradiation, while the magnitude of the drain–source current was relatively unaffected. This is consistent with a strong increase of trap density in the material. The magnitude of the decrease in transconductance of the AlGaN/GaN HEMTs is roughly comparable to the decrease in dc current gain observed in InGaP/GaAs heterojunction bipolar transistors irradiated under similar conditions.

1.
S.
Karmalkar
,
J.
Deng
,
M. S.
Shur
, and
R.
Gaska
,
IEEE Electron Device Lett.
22
,
373
(
2001
).
2.
C.
Nguyen
,
N. X.
Nguyen
, and
D. E.
Grider
,
Electron. Lett.
35
,
1380
(
1999
).
3.
H.
Morkoç
,
R.
Cingolani
and
B.
Gil
,
Solid-State Electron.
43
,
1909
(
1999
).
4.
M.
Akita
,
S.
Kishimoto
, and
T.
Mizutani
,
IEEE Electron Device Lett.
22
,
376
(
2001
).
5.
S. T.
Sheppard
,
K.
Doverspike
,
W. L.
Pribble
,
S. T.
Allen
,
J. W.
Palmour
,
L. T.
Kehias
, and
T. J.
Jenkins
,
IEEE Electron Device Lett.
20
,
161
(
1999
).
6.
N.-Q.
Zhang
,
S.
Keller
,
G.
Parish
,
S.
Heikman
,
S. P.
DenBaars
,
U. K.
Mishra
,
IEEE Electron Device Lett.
21
,
421
(
2000
).
7.
G.
Simin
,
X.
Hu
,
N.
Ilinskaya
,
J.
Zhang
,
A.
Kumar
,
A.
Kovdymov
,
J.
Zhang
,
M. A.
Khan
,
R.
Gasku
, and
M. S.
Shur
,
Electron. Lett.
36
,
2043
(
2000
).
8.
J.
Burm
,
W. J.
Schaff
,
G. H.
Martin
,
L. F.
Eastman
,
H.
Amano
, and
I.
Akasaki
,
Solid-State Electron.
41
,
247
(
1997
).
9.
S. C.
Binari
,
K.
Ikossi
,
J. A.
Roussos
,
W.
Kruppa
,
D.
Park
,
H. B.
Dietrich
,
D. D.
Koleske
,
A. E.
Wickenden
, and
R. L.
Henry
,
IEEE Trans. Electron Devices
48
,
465
(
2001
).
10.
L. F.
Eastman
,
V.
Tilak
,
J.
Smart
,
B. M.
Green
,
E. M.
Chumbes
,
R.
Dimitrov
,
H.
Kim
,
O. S.
Ambacher
,
N.
Weimann
,
T.
Prunty
,
M.
Murphy
,
W. J.
Schaff
, and
J. R.
Shealy
,
IEEE Trans. Electron Devices
48
,
479
(
2001
).
11.
W.
Lu
,
J.
Yang
,
M. A.
Khan
, and
I.
Adesida
,
IEEE Trans. Electron Devices
48
,
581
(
2001
).
12.
Y. F.
Wu
,
D.
Kapolnek
,
J. P.
Ibbetson
,
P.
Parikh
,
B. P.
Keller
, and
U. K.
Mishra
,
IEEE Trans. Electron Devices
48
,
586
(
2001
).
13.
D. C.
Look
,
D. C.
Reynolds
,
J. W.
Hemsky
,
J. R.
Sizelove
,
R. L.
Jones
, and
R. J.
Molnar
,
Phys. Rev. Lett.
79
,
2273
(
1997
).
14.
S. J.
Cai
,
Y. S.
Tang
,
R.
Li
,
Y. Y.
Wei
,
L.
Wong
,
Y. L.
Chen
,
K. L.
Wang
,
M.
Chen
,
R. D.
Schrimpf
,
J. C.
Keay
, and
K. F.
Galloway
,
IEEE Trans. Electron Devices
47
,
304
(
2000
).
15.
B.
Luo
,
J. W.
Johnson
,
F.
Ren
,
K. K.
Allums
,
C. R.
Abernathy
,
S. J.
Pearton
,
R.
Dwivedi
,
T. N.
Fogarty
,
R.
Wilkins
,
A. M.
Dabiran
,
A. M.
Wowchack
,
C. J.
Polley
,
P. P.
Chow
, and
A. G.
Baca
,
Appl. Phys. Lett.
79
,
2196
(
2001
).
16.
L.
Chernyak
,
A.
Osinsky
,
V. N.
Fuflyigin
,
J. W.
Graff
, and
E. F.
Schubert
,
IEEE Trans. Electron Devices
48
,
433
(
2001
).
17.
J. M.
Van Hove
,
P. P.
Chow
,
A. M.
Wowchack
,
J. J.
Klaassen
,
M. F.
Rosamond
, and
D. R.
Crosswell
,
J. Cryst. Growth
175
,
79
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.