Use of an epitaxial conducting template has enabled the integration of epitaxial ferroelectric perovskites on silicon. The conducting template layer, LaxSr1−xTiO3 (LSTO), deposited onto (001) silicon wafers by molecular-beam epitaxy is then used to seed {001}-oriented epitaxial perovskite layers. We illustrate the viability of this approach using PbZr0.4Ti0.6O3 (PZT) as the ferroelectric layer contacted with conducting perovskite La0.5Sr0.5CoO3 (LSCO) electrodes. An important innovation that further facilitates this approach is the use of a low-temperature (450 °C) sol–gel process to crystallize the entire ferroelectric stack. Both transmission electron microscopy and x-ray diffraction analysis indicate the LSCO/PZT/LSCO/LSTO/Si heterostructures are epitaxial. The electrical response of ferroelectric capacitors (for pulse widths down to 1 μs) measured via the underlying silicon substrate is identical to measurements made using conventional capacitive coupling method, indicating the viability of this approach.

1.
O.
Auciello
,
J. F.
Scott
, and
R.
Ramesh
,
Phys. Today
51
,
22
(
1998
).
2.
See for example, Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits, edited by S. P. Murarka, M. Eizenberg, D. B. Fraser, R. Madar, and R. T. Tung (Materials Research Society, Warrendale, PA, 1998), Vol. 514.
3.
B.
Yang
,
S.
Aggarwal
,
A. M.
Dhote
,
T. K.
Song
,
R.
Ramesh
, and
J. S.
Lee
,
Appl. Phys. Lett.
71
,
356
(
1997
).
4.
S.
Aggarwal
,
B.
Nagaraj
,
I. G.
Jenkins
,
H.
Li
,
R. P.
Sharma
,
L.
Salamanca-Riba
,
R.
Ramesh
,
A. M.
Dhote
,
A. R.
Krauss
, and
O.
Auciello
,
Acta Mater.
48
,
3387
(
2000
).
5.
S. R.
Summerfelt
,
T. S.
Moise
,
G.
Xing
,
L.
Colombo
,
T.
Sakoda
,
S. R.
Gilbert
,
A. L. S.
Loke
,
S.
Ma
,
L. A.
Wills
,
R.
Kavari
,
T.
Hsu
,
J.
Amano
,
S. T.
Johnson
,
D. J.
Vestcyk
,
M. W.
Russell
,
S. M.
Bilodeau
, and
P.
van Buskirk
,
Appl. Phys. Lett.
79
,
4004
(
2001
).
6.
A.
Gruverman
,
Appl. Phys. Lett.
75
,
1452
(
1999
).
7.
T.
Yamaguti
,
Proc. Phys. Math. Soc. Jpn.
17
,
443
(
1935
).
8.
R.
Sato
,
J. Phys. Soc. Jpn.
6
,
527
(
1951
).
9.
M.
Ihara
,
Y.
Arimoto
,
M.
Jifuku
,
T.
Kimura
,
S.
Kodama
,
H.
Yamawaki
, and
T.
Yamaoka
,
J. Electrochem. Soc.
129
,
2569
(
1982
).
10.
S.
Matsubara
,
N.
Shohata
, and
M.
Mikami
,
Jpn. J. Appl. Phys., Suppl.
24
,
10
(
1985
).
11.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
12.
A.
Lin
,
X.
Hong
,
V.
Wood
,
A. A.
Verevkin
,
C. H.
Ahn
,
R. A.
Mckee
,
F. J.
Walker
, and
E. D.
Specht
,
Appl. Phys. Lett.
78
,
2034
(
2001
).
13.
K.
Eisenbeiser
,
J. M.
Finder
,
Z.
Yu
,
J.
Ramdani
,
J. A.
Curless
,
J. A.
Hallmark
,
R.
Droopad
,
W. J.
Ooms
,
L.
Salem
,
S.
Bradshaw
, and
C. D.
Overgaard
,
Appl. Phys. Lett.
76
,
1324
(
2000
).
14.
Y.
Wang
,
C.
Ganpule
,
B. T.
Liu
,
H.
Li
,
K.
Mori
,
B.
Hill
,
M.
Wuttig
,
R.
Ramesh
,
J.
Finder
,
Z.
Yu
,
R.
Droopad
, and
K.
Eisenbeiser
,
Appl. Phys. Lett.
80
,
97
(
2002
).
15.
O. N.
Tufte
and
P. W.
Chapman
,
Phys. Rev.
155
,
796
(
1967
);
H. P. R.
Frederikse
,
W. R.
Thurber
, and
W. R.
Hosler
,
Phys. Rev.
134
,
A442
(
1964
);
H.
Yamada
and
G. R.
Miller
,
J. Solid State Chem.
6
,
169
(
1973
).
16.
K.
Maki
,
N.
Soyama
,
K.
Nagamine
,
S.
Mori
, and
K.
Ogi
,
Jpn. J. Appl. Phys., Part 1
40
,
5533
(
2001
).
17.
Throughout this manuscript, the pseudocubic indices for La0.5Sr0.5CoO3 are used (a=3.83 Å).
18.
W. Tian, X. Q. Pan, B. T. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J. H. Haeni, and D. G. Schlom (unpublished).
19.
E. Fatuzzo and W. J. Merz, Ferroelectricity (Wiley, New York, 1967).
20.
R.
Ramesh
,
W. K.
Chan
,
B.
Wilkens
,
H.
Gilchrist
,
T.
Sands
,
J. M.
Tarascon
,
D. K.
Fork
,
J.
Lee
, and
A.
Safari
,
Appl. Phys. Lett.
61
,
1537
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.