Thin films of aluminum oxide were deposited on H-passivated Si(100) substrate using trimethylaluminum and oxygen at 0.5 Torr and 300 °C. Fourier transform infrared (FTIR) and x-ray photoelectron spectroscopic analyses of these films showed no aluminum silicate phase at the film–substrate interface. The O/Al ratio in the deposited film was found to be higher than that in stoichiometric Al2O3. On annealing the as-deposited samples in Ar at 900 °C, an absorption peak due to the transverse optical phonon for the SiOSi stretching mode appeared in the FTIR spectra. A combination of Z-contrast imaging and electron energy-loss spectroscopy in the scanning transmission electron microscope confirmed that the annealed samples developed a layer of silicon dioxide at the aluminum oxide–Si interface. Our results suggest that excess oxygen present in the deposited film reacts with the underlying Si substrate and forms silicon oxide.

1.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
2.
S.
Guha
,
E.
Cartier
,
N. A.
Bojarczuk
,
J.
Bruley
,
L.
Gignac
, and
J.
Karasinski
,
J. Appl. Phys.
90
,
512
(
2001
).
3.
V. A. C.
Haanappel
,
H. D.
van Corbach
,
T.
Fransen
, and
P. J.
Gellings
,
Surf. Coat. Technol.
72
,
13
(
1995
).
4.
E. P.
Gusev
,
M.
Copel
, and
E.
Cartier
,
Appl. Phys. Lett.
76
,
176
(
2000
).
5.
T. M.
Klein
,
D.
Niu
,
W. S.
Epling
,
W.
Li
,
D. M.
Maher
,
C. C.
Hobbs
,
R. I.
Hegde
,
I. J. R.
Baumvol
, and
G. N.
Parsons
,
Appl. Phys. Lett.
75
,
4001
(
1999
).
6.
Y.-C.
Kim
,
H.-H.
Park
,
J. S.
Chun
, and
W.-J.
Lee
,
Thin Solid Films
237
,
57
(
1994
).
7.
B. S.
Ault
,
J. Organomet. Chem.
572
,
169
(
1999
).
8.
Z.
Cui
,
J.
Madsen
, and
C. G.
Takoudis
,
J. Appl. Phys.
87
,
8181
(
2000
).
9.
E. M.
James
and
N. D.
Browning
,
Ultramicroscopy
78
,
125
(
1999
).
10.
E. M.
James
,
N. D.
Browning
,
A. W.
Nicholls
,
M.
Kawasaki
,
Y.
Xin
, and
S.
Stemmer
,
J. Electron Microsc.
47
,
561
(
1998
).
11.
R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1986).
12.
N. D.
Browning
,
M. F.
Chrisholm
, and
S. J.
Pennycook
,
Nature (London)
366
,
143
(
1993
).
13.
P. D.
Nellist
and
S. J.
Pennycook
,
Ultramicroscopy
78
,
111
(
1999
).
14.
D. E.
Jesson
and
S. J.
Pennycook
,
Proc. R. Soc. London, Ser. A
449
,
273
(
1995
).
15.
Z.
Katz-Tsameret
and
A.
Raveh
,
J. Vac. Sci. Technol. A
13
,
1121
(
1995
).
16.
R.
Cueff
,
G.
Baud
,
M.
Benmalek
,
J. P.
Besse
,
J. R.
Butruille
,
H. M.
Dunlop
, and
M.
Jacquet
,
Thin Solid Films
270
,
230
(
1995
).
17.
P.
Tarte
,
Spectrochim. Acta, Part A
23
,
2127
(
1967
).
18.
C.
Morterra
and
G.
Magnacca
,
Catal. Today
27
,
497
(
1996
).
19.
M. P.
Kumar
,
C.
Balasubramanian
,
N. D.
Sali
,
S. V.
Bhoraskar
,
V. K.
Rohatgi
, and
S.
Badrinarayanan
,
Mater. Sci. Eng., B
63
,
215
(
1999
).
20.
W. R.
Salenek
,
R.
Bergman
,
J.-E.
Sundgren
,
A.
Rockett
,
T.
Motooka
, and
J. E.
Green
,
Surf. Sci.
198
,
461
(
1988
).
21.
Q.
Wang
,
W.
Zhao
,
J.
Lozano
,
Y.-M.
Sun
,
C. G.
Willson
, and
J. M.
White
,
Appl. Surf. Sci.
183
,
182
(
2001
).
22.
E.
Paparazzo
,
Vacuum
62
,
47
(
2001
).
23.
B. G.
Segda
,
M.
Jacquet
, and
J. P.
Besse
,
Vacuum
62
,
27
(
2001
).
24.
A.
Pasquarello
and
R.
Car
,
Phys. Rev. Lett.
79
,
1766
(
1997
).
25.
K. T.
Queeney
,
M. K.
Weldon
,
J. P.
Chang
,
Y. J.
Chabal
,
A. B.
Gurevich
,
J.
Sapjeta
, and
R. L.
Opila
,
J. Appl. Phys.
87
,
1322
(
2000
).
26.
P. E.
Batson
,
Nature (London)
366
,
727
(
1993
).
27.
M.
Halvarsson
,
A.
Larsson
, and
S.
Ruppi
,
Micron
32
,
807
(
2001
).
28.
K.
Suenaga
,
D.
Bouchet
,
C.
Colliex
,
A.
Thorel
, and
D. G.
Brandon
,
J. Eur. Ceram. Soc.
18
,
1453
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.