The dc transport properties of coupled quantum dots in single-wall carbon nanotubes have been studied below 100 mK under microwave irradiation. The Coulomb oscillations for different microwave power were similar to those for different bias voltages without microwave. The current–voltage curves showed simple shifts as the microwave power was increased. These experimental observations may be explained by the classical response of the coupled quantum dots to the microwave irradiation.

1.
S.
Komiyama
,
O.
Astafiev
,
V.
Antonov
,
H.
Hirai
, and
T.
Kutsuwa
,
Nature (London)
403
,
405
(
2000
).
2.
T. H.
Oosterkamp
,
L. P.
Kouwenhoven
,
A. E. A.
Koolen
,
N. C.
van der Vaart
, and
C. J. P. M.
Harmans
,
Phys. Rev. Lett.
78
,
1536
(
1997
).
3.
T. H.
Oosterkamp
,
T.
Fujisawa
,
W. G.
van der Wiel
,
K.
Ishibashi
,
R. V.
Hijman
,
S.
Tarucha
, and
L. P.
Kouwenhoven
,
Nature (London)
395
,
873
(
1998
).
4.
H.
Qin
,
A. W.
Holleitner
,
K.
Eberl
, and
R. H.
Blick
,
Phys. Rev. B
64
,
241
302
(
2002
).
5.
D.
Loss
and
D. P.
Divincenzo
,
Phys. Rev. A
57
,
120
(
1998
).
6.
K.
Ishibashi
,
M.
Suzuki
,
T.
Ida
, and
Y.
Aoyagi
,
Appl. Phys. Lett.
79
,
1864
(
2001
).
7.
M.
Suzuki
,
K.
Ishibashi
,
T.
Ida
,
D.
Tsuya
,
K.
Toratani
, and
Y.
Aoyagi
,
J. Vac. Sci. Technol. B
19
,
2770
(
2001
).
8.
Electron temperature may be higher than this even without microwave irradiation, and is estimated to be about 0.25 K (kBT=22 μeV). Microwave power was kept low enough to prevent further temperature increase.
9.
K. Ishibashi, M. Suzuki, T. Ida, and Y. Aoyagi, (in press).
10.
F. R.
Waugh
,
M. J.
Berry
,
D. J.
Mar
,
R. M.
Westervelt
,
K. L.
Campman
, and
A. C.
Gossard
,
Phys. Rev. Lett.
75
,
705
(
1995
).
11.
Peak positions in Fig. 3 have shifted a little bit from those in Fig. 2. It is difficult to determine whether the peak at Vg=−1.2 V in Fig. 3 corresponds to “C” or “D.” To be more precise, the microwave signal also couples to the gate, although very small, and should be considered to determine the peaks picked up by microwave irradiation.
12.
In our device layout where both source-drain contacts and gates are on the surface, the self-capacitance (C=Cs+Cd+Cg) is dominated by Cs and Cd(Cg≪Cs,Cd), where Cs(Cd) is the capacitance between the metallic source (drain) contact and SWNTs.
13.
L. J.
Geeligs
,
V. F.
Anderegg
,
P. A. M.
Holweg
, and
J. E.
Mooij
,
Phys. Rev. Lett.
64
,
2691
(
1990
).
14.
H.
Pothier
,
P.
Lafarge
,
C.
Urbina
,
D.
Esteve
, and
M. H.
Devoret
,
Europhys. Lett.
17
,
249
(
1992
).
15.
R. J.
Fizgerald
,
J. M.
Hergenrother
,
S. L.
Pohlen
, and
M.
Tinkham
,
Phys. Rev. B
57
,
9893
(
1998
).
16.
T. Ida, K. Ishibashi, K. Tsukagoshi, and Y. Aoyagi, Proceedings of the 25th International Conference on the Physics of Semiconductors, 17–22 September 2000, Osaka, Japan, p. 1617.
17.
M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).
This content is only available via PDF.
You do not currently have access to this content.