High-output-power and high-bandwidth performances are usually two tradeoff parameters in the design of high-speed photodetectors. In this letter, we report high peak-output-voltage (∼20 V) and peak-output-current (∼400 mA, 50 Ω load) together with ultrahigh-speed performances (1.5 ps, 220 GHz), observed in low-temperature-grown-GaAs (LTG-GaAs) based metal-semiconductor-metal (MSM) traveling-wave photodetectors (TWPDs) at a wavelength of 800 nm. Ultrahigh-peak-output-power and ultrahigh-electrical-bandwidth performances were achieved due to the superior MSM microwave guiding structure and a short carrier trapping time in the LTG-GaAs layer, which reduced the space-charge screening effect and increased the photoabsorption volume without sacrificing electrical bandwidth significantly. We also observed different bias-dependent nonlinear behaviors in MSM TWPDs under high and low illuminated optical power excitations, which are possibly dominated by the space-charge screening and the lifetime increasing effects, respectively.

1.
K.
Kato
,
IEEE Trans. Microwave Theory Tech.
47
,
1265
(
1999
).
2.
S.
Fukushima
,
C. F. C.
Silva
,
Y.
Muramoto
, and
A. J.
Seeds
,
IEEE Photonics Technol. Lett.
13
,
720
(
2001
).
3.
K. J.
Williams
,
R. D.
Esman
, and
M.
Dagenais
,
J. Lightwave Technol.
14
,
84
(
1996
).
4.
Y.-L.
Huang
and
C.-K.
Sun
,
J. Lightwave Technol.
18
,
203
(
2000
).
5.
H.
Ito
,
T.
Furuta
,
S.
Kodama
,
N.
Watanabe
, and
T.
Ishibashi
,
Electron. Lett.
36
,
1809
(
2000
).
6.
V. M.
Hietala
,
G. A.
Vawter
,
T. M.
Brenan
, and
B. E.
Hammons
,
IEEE Trans. Microwave Theory Tech.
43
,
2291
(
1995
).
7.
J.-W.
Shi
and
C.-K.
Sun
,
J. Lightwave Technol.
18
,
2176
(
2000
).
8.
L. Y.
Lin
,
M. C.
Wu
,
T.
Itoh
,
T. A.
Vang
,
R. E.
Muller
,
D. L.
Sivco
, and
A. Y.
Cho
,
IEEE Trans. Microwave Theory Tech.
45
,
1320
(
1997
).
9.
J.-W.
Shi
,
K. G.
Gan
,
Y. J.
Chiu
,
Y.-H.
Chen
,
C.-K.
Sun
,
Y. J.
Yang
, and
J. E.
Bowers
,
IEEE Photonics Technol. Lett.
16
,
623
(
2001
).
10.
N.
Zamdmer
,
Q.
Hu
,
K. A.
McIntosh
, and
S.
Verghese
,
Appl. Phys. Lett.
75
,
2313
(
1999
).
11.
A. J.
Lochtefeld
,
M. R.
Melloch
,
J. C. P.
Chang
, and
E. S.
Harmon
,
Appl. Phys. Lett.
69
,
1465
(
1996
).
12.
Y. J. Chiu, S. B. Fleischer, J. E. Bowers, A. C. Gossard, and U. K. Mishra, Conference on Lasers and Electro-Optics, OSA Technical Digest (1998), p. 501.
13.
H.
Hasegawa
,
M.
Furukawa
, and
H.
Yanai
,
IEEE Trans. Microwave Theory Tech.
19
,
869
(
1971
).
14.
K. S.
Giboney
,
M. J. W.
Rodwell
, and
J. E.
Bowers
,
IEEE Photonics Technol. Lett.
4
,
1363
(
1992
).
15.
K. J.
Weingarten
,
M. J. W.
Rodwell
, and
D. M.
Bloom
,
IEEE J. Quantum Electron.
24
,
198
(
1988
).
16.
S.
Gupta
,
J. F.
Whitaker
, and
G. A.
Mourou
,
IEEE J. Quantum Electron.
28
,
2464
(
1992
).
17.
T. H.
Ning
,
J. Appl. Phys.
47
,
3203
(
1976
).
18.
J. P.
Ibbetson
and
U. K.
Mishra
,
Appl. Phys. Lett.
68
,
3781
(
1996
).
19.
C.-K.
Sun
,
I.-H.
Tan
, and
J. E.
Bowers
,
IEEE Photonics Technol. Lett.
10
,
135
(
1998
).
20.
K. S.
Giboney
,
M. J.
Rodwell
, and
J. E.
Bowers
,
IEEE J. Sel. Top. Quantum Electron.
2
,
622
(
1996
).
21.
S.
Verghese
,
K. A.
McIntosh
, and
E. R.
Brown
,
IEEE Trans. Microwave Theory Tech.
45
,
1301
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.