The band gap of GaN under uniaxial-strain compression was determined using time-resolved optical transmission measurements in shock-wave experiments. Shock waves were generated by impacting the GaN samples with c-cut sapphire impactors mounted on projectiles fired by a gas gun. Impact velocities were varied to provide longitudinal stresses ranging from 4.5 to 13 GPa. An abrupt increase of the band gap is observed upon shock-wave compression, followed by a slower increase. By measuring the absorption threshold before and during shock compression of the GaN layer, the band-gap shift for a particular longitudinal stress was obtained. A linear fit to the data yields a band-gap shift of 0.02 eV/GPa. Comparison with ab initio calculations show that this slope lies between the calculated bounds for isotropic and uniaxial compression. Potential reasons for the differences are indicated.

1.
S.
Nakamura
,
Mater. Res. Soc. Symp. Proc.
482
,
1145
(
1998
).
2.
Wide-Band-Gap Semiconductors for High Power, High Frequency, and High Temperature, edited by S. Denbaars, M. S. Shur, J. Palmour, and M. Spencer (Materials Research Society, Pittsburgh, 1998), Vol. 512.
3.
M. D.
McCluskey
,
C. G.
Van de Walle
,
C. P.
Master
,
L. T.
Romano
, and
N. M.
Johnson
,
Appl. Phys. Lett.
72
,
2725
(
1998
);
C.
Wetzel
,
T.
Takeuchi
,
S.
Yamaguchi
,
H.
Katoh
,
H.
Amano
, and
I.
Akasaki
,
Appl. Phys. Lett.
73
,
1994
(
1998
).
4.
W.
Shan
,
R. J.
Hauenstein
,
A. J.
Fischer
,
J. J.
Song
,
W. G.
Perry
,
M. D.
Bremser
,
R. F.
Davis
, and
B.
Goldenberg
,
Phys. Rev. B
54
,
13460
(
1996
).
5.
S.
Chichibu
,
A.
Shikanai
,
T.
Azuhata
,
T.
Sota
,
A.
Kuramata
,
K.
Horino
, and
S.
Nakamura
,
Appl. Phys. Lett.
68
,
3766
(
1996
).
6.
W.
Shan
,
T. J.
Schmidt
,
R. J.
Hauenstein
,
J. J.
Song
, and
B.
Goldenberg
,
Appl. Phys. Lett.
66
,
3492
(
1995
).
7.
P.
Perlin
,
L.
Mattos
,
N. A.
Shapiro
,
J.
Kruger
,
W. S.
Wong
,
T.
Sands
,
N. W.
Cheung
, and
E. R.
Weber
,
J. Appl. Phys.
85
,
2385
(
1999
).
8.
G. R.
Fowles
,
G. E.
Duvall
,
J.
Asay
,
P.
Bellamy
,
F.
Feistmann
,
D.
Grady
,
T.
Michaels
, and
R.
Mitchell
,
Rev. Sci. Instrum.
41
,
984
(
1970
).
9.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
41
,
4208
(
1970
).
10.
C. S.
Yoo
and
Y. M.
Gupta
,
J. Phys. Chem.
94
,
2857
(
1990
).
11.
J. M.
Winey
and
Y. M.
Gupta
,
J. Phys. Chem. A
101
,
9333
(
1997
).
12.
G.
Yu
,
G.
Wang
,
H.
Ishikawa
,
M.
Umeno
,
T.
Soga
,
T.
Egawa
,
J.
Watanabe
, and
T.
Jimbo
,
Appl. Phys. Lett.
70
,
3209
(
1997
).
13.
V. S.
Vavilov
,
Sov. Phys. Usp.
4
,
761
(
1962
);
L. V.
Keldysh
,
Sov. Phys. JETP
7
,
788
(
1958
);
W.
Franz
,
Z. Naturforsch. A
13
,
484
(
1958
).
14.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. B
56
,
R10024
(
1997
).
15.
J.
Neugebauer
and
C. G.
Van de Walle
,
Phys. Rev. B
50
,
8067
(
1994
).
16.
C. G.
Van de Walle
and
J.
Neugebauer
,
Appl. Phys. Lett.
70
,
2577
(
1997
).
17.
G. L. Bir and G. E. Pikus, Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York, 1974).
18.
A.
Shikanai
,
T.
Azuhata
,
T.
Sota
,
S.
Chichibu
,
A.
Kuramata
,
K.
Horino
, and
S.
Nakamura
,
J. Appl. Phys.
81
,
417
(
1997
).
19.
A.
Polian
,
M.
Grimsditch
, and
I.
Grzegory
,
J. Appl. Phys.
79
,
3343
(
1996
).
20.
P.
Rigg
and
Y. M.
Gupta
,
Phys. Rev. B
63
,
094112
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.