Highly ordered hexagonal arrays of parallel metallic nanowires (Ni, Bi) with diameters of about 50 nm and lengths up to 50 μm were synthesized by electrodeposition. Hexagonal-close-packed nanochannel anodized aluminum oxide film was used as the deposition template. The deposition was performed in an organic bath of dimethylsulfoxide with metal chloride as the electrolyte. A high degree of ordering and uniformity in these arrays can be obtained with this technique by fine-tuning the electrodeposition parameters. Moreover, an unprecedentedly high level of uniformity and control of the wire length was achieved. The arrays are unique platforms for explorations of collective behavior in coupled mesoscopic systems, and are useful for applications in high-density data storage, field emission displays, and sensors.

1.
S.
Manalis
,
K.
Babcock
,
J.
Massie
,
V.
Elings
, and
M.
Dugas
,
Appl. Phys. Lett.
66
,
2585
(
1995
).
2.
S. Y.
Chou
,
M. S.
Wei
,
P. R.
Krauss
, and
P. B.
Fisher
,
J. Appl. Phys.
76
,
6673
(
1994
).
3.
J. L.
Simonds
,
Phys. Today
48
,
26
(
1995
).
4.
C. R.
Martin
,
Science
266
,
1961
(
1994
).
5.
C.
Schönenberger
,
B. M. I.
van der Zande
,
L. G. J.
Fokkink
,
M.
Henny
,
C.
Schmid
,
M.
Krüger
,
A.
Bachtold
,
R.
Huber
,
H.
Birk
, and
U.
Staufer
,
J. Phys. Chem. B
101
,
5497
(
1997
).
6.
M.
Lederman
,
R.
O’Barr
, and
S.
Schultz
,
IEEE Trans. Magn.
31
,
3793
(
1995
).
7.
A.
Blondel
,
J. P.
Meier
,
B.
Doudin
, and
J.-Ph.
Ansermet
,
Appl. Phys. Lett.
65
,
3019
(
1994
).
8.
K.
Ounadjela
,
R.
Ferré
,
L.
Louail
,
J.-M.
George
,
J. L.
Manrice
,
L.
Piraux
, and
S.
Duboix
,
J. Appl. Phys.
81
,
5455
(
1997
).
9.
H.
Masuda
and
K.
Fukuda
,
Science
268
,
1466
(
1995
).
10.
F.
Li
,
L.
Zhang
, and
R. M.
Metzger
,
Chem. Mater.
10
,
2473
(
1998
).
11.
O.
Jessensky
,
F.
Müller
, and
U.
Gösele
,
Appl. Phys. Lett.
72
,
1173
(
1998
).
12.
D.
Almawlawi
,
N.
Coomds
, and
M.
Moskovits
,
J. Appl. Phys.
70
,
4421
(
1991
).
13.
F.
Li
and
R. M.
Metzger
,
J. Appl. Phys.
81
,
3806
(
1997
).
14.
Y.
Li
,
G. M.
Meng
,
L. D.
Zhang
, and
F.
Phillipp
,
Appl. Phys. Lett.
76
,
2011
(
2000
).
15.
J.
Haruyama
,
D. N.
Davydov
,
D.
Routkevitch
,
D.
Ellis
,
B. W.
Statt
,
M.
Moskovits
, and
J. M.
Xu
,
Solid-State Electron.
42
,
1257
(
1998
).
16.
D.
Routkevitch
,
T.
Bigioni
,
M.
Moskovits
, and
J. M.
Xu
,
J. Phys. Chem.
100
,
14037
(
1996
).
17.
D.
Xu
,
Y.
Xu
,
D.
Chen
,
G.
Guo
,
L.
Gui
, and
Y.
Tang
,
Chem. Phys. Lett.
325
,
340
(
2000
).
18.
D.
Xu
,
X.
Shi
,
G.
Guo
,
L.
Gui
, and
Y.
Tang
,
J. Phys. Chem. B
104
,
5061
(
2000
).
19.
J. M.
Garcı́a
,
A.
Asenjo
,
J.
Valázquez
,
D.
Garcı́a
,
M.
Vázquez
,
P.
Aranda
, and
E.
Ruiz-Hitzky
,
J. Appl. Phys.
85
,
5480
(
1999
).
20.
Y.
Peng
,
H. L.
Zhang
,
S. L.
Pan
, and
H. L.
Li
,
J. Appl. Phys.
87
,
7405
(
2000
).
21.
H.
Zeng
,
M.
Zhang
,
R.
Skomski
,
D. J.
Sellmyer
,
Y.
Liu
,
L.
Menon
, and
S.
Bandyopadhyay
,
J. Appl. Phys.
87
,
4718
(
2000
).
22.
P. R.
Evans
,
G.
Yi
, and
W.
Schwarzacher
,
Appl. Phys. Lett.
76
,
481
(
2000
).
23.
T. M.
Whitney
,
J. S.
Jiang
,
P. C.
Searson
, and
C. L.
Chien
,
Science
261
,
1316
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.