Hydrothermal multiwall closed carbon nanotubes are shown to contain an encapsulated multiphase aqueous fluid, thus offering an attractive test platform for unique in situ nanofluidic experiments in the vacuum of a transmission electron microscope. The excellent wettability of the graphitic inner tube walls by the aqueous liquid and the mobility of this liquid in the nanotube channels are observed. Complex interface dynamic behavior is induced by means of electron irradiation. Strong atomic-scale interactions between the entrapped liquid phase and the wetted terminated graphite layers are revealed by means of high-resolution electron microscopy. The documented phenomena in this study demonstrate the potential of implementing such tubes in future nanofluidic devices.

1.
V. V. Krotov and A. I. Rusanov, Physicochemical Hydrodynamics of Capillary Systems (Imperial College Press, London, 1999).
2.
S.
Iijima
,
MRS Bull.
19
,
43
(
1994
).
3.
P. J. F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 1999).
4.
E.
Delamarche
,
A.
Bernard
,
H.
Schmid
,
B.
Michel
, and
H.
Biebuyck
,
Science
276
,
779
(
1997
).
5.
M. A.
Burns
,
B. N.
Johnson
,
S. N.
Brahmasandra
,
K.
Handique
,
J. R.
Webster
,
M.
Krishnan
,
T. S.
Sammarco
,
P. M.
Man
,
D.
Jones
,
D.
Heldsinger
,
C. H.
Mastrangelo
, and
D. T.
Burke
,
Science
282
,
484
(
1998
).
6.
D.
Ugarte
,
A.
Chatelain
, and
W. A.
DeHeer
,
Science
274
,
1897
(
1996
).
7.
P. M.
Ajayan
and
S.
Iijima
,
Nature (London)
361
,
333
(
1993
).
8.
T. W. Ebbesen, Carbon Nanotubes: Preparation and Properties (CRC Press, Boca Raton, FL, 1997).
9.
D. Ugarte, T. Stockli, J.-M. Bonard, A. Chatelain, and W. A. DeHeer, in The Science and Technology of Carbon Nanotubes, edited by K. Tanaka, T. Yamabe, and K. Fukui (Elsevier, Amsterdam, 1999), pp. 128–142.
10.
E.
Dujardin
,
T. W.
Ebbesen
,
H.
Hiura
, and
K.
Tanigaki
,
Science
265
,
1850
(
1994
).
11.
T. W.
Ebbesen
,
Annu. Rev. Mater. Sci.
24
,
235
(
1994
).
12.
R. E.
Tuzun
,
D. W.
Noid
,
B. G.
Sumpter
, and
R. C.
Merkle
,
Nanotechnology
7
,
241
(
1996
).
13.
V. N.
Bogomolov
,
Sov. Phys. Tech. Phys.
37
,
79
(
1992
).
14.
R. E.
Tuzun
,
D. W.
Noid
,
B. G.
Sumpter
, and
R. C.
Merkle
,
Nanotechnology
8
,
112
(
1997
).
15.
G. E.
Gadd
,
M.
Blackford
,
D.
Moricca
,
N.
Webb
,
P. J.
Evans
,
A. M.
Smith
,
G.
Jacobsen
,
S.
Leung
,
A.
Day
, and
Q.
Hua
,
Science
277
,
933
(
1977
).
16.
J.
Libera
and
Y.
Gogotsi
,
Carbon
39
,
1307
(
2001
).
17.
Y. G.
Gogotsi
,
J.
Libera
, and
M.
Yoshimura
,
J. Mater. Res.
15
,
2591
(
2000
).
18.
Y. G.
Gogotsi
and
M.
Yoshimura
,
Nature (London)
367
,
628
(
1994
).
19.
Y. G.
Gogotsi
and
K. G.
Nickel
,
Carbon
36
,
937
(
1998
).
20.
Y.
Gogotsi
,
T.
Kraft
,
K. G.
Nickel
, and
M. E.
Zvanut
,
Diamond Relat. Mater.
7
,
1459
(
1998
).
21.
Y.
Gogotsi
,
J. A.
Libera
,
A.
Guvenc
, and
C. M.
Megaridis
,
Mater. Res. Soc. Symp. Proc.
633
,
A7
.
4
(
2001
).
22.
R. Weinberger, Practical Capillary Electrophoresis (Academic, San Diego, 2000).
23.
A. T. Andrews, Electrophoresis: Theory, Techniques, and Biochemical and Clinical Applications (Clarenden, Oxford, 1986).
24.
F. M. White, Fluid Mechanics (WCB/McGraw-Hill, New York, 1999).
This content is only available via PDF.
You do not currently have access to this content.