Directional solidification of cylinder forming block copolymer films confined between a directionally crystallizing solvent (benzoic acid) and a topographically patterned silicon substrate imparts a particular orientation to the block copolymer microdomains that is dependent of the solidification direction and the local film thickness. The substrate features (30 nm high, 2μm wide square mesas on a 4μm sq lattice) shape the film morphology by periodically modulating the local film thickness. Thicker regions between substrate features (plateaus) exhibit in-plane cylinders aligned in the crystallization direction and thinner regions over the substrate features (mesas) display vertically aligned cylindrical domains. This approach is a simple and general technique for engineering an intended domain orientation in specific areas of a block copolymer film. Development of this method for nanolithographic applications is demonstrated through oxygen plasma reactive ion etching of the patterned cylindrical domains.

1.
Y.
Fink
,
A. M.
Urbas
,
B. G.
Bawendi
,
J. D.
Joannopoulos
, and
E. L.
Thomas
,
J. Lightwave Technol.
17
,
1963
(
1999
).
2.
A. M.
Urbas
,
R.
Sharp
,
Y.
Fink
,
E. L.
Thomas
,
M.
Xenidou
, and
L. J.
Fetters
,
Adv. Mater.
12
,
812
(
2000
).
3.
R. R.
Li
,
P. D.
Dapkus
,
M. E.
Thompson
,
W. G.
Jeong
,
C.
Harrison
,
P. M.
Chaikin
,
R. A.
Register
, and
D. H.
Adamson
,
Appl. Phys. Lett.
76
,
1689
(
2000
).
4.
M.
Park
,
C.
Harrison
,
P. M.
Chaikin
,
R. A.
Register
, and
D. H.
Adamson
,
Science
276
,
1401
(
1997
).
5.
J. Y. Cheng, C. A. Ross, V. Z.-H. Chan, E. L. Thomas, R. G. H. Lammertink, and G. J. Vancso, Adv. Mater. (in press).
6.
M. J.
Fasolka
and
A. M.
Mayes
,
Annu. Rev. Mater. Sci.
31
,
323
(
2001
).
7.
T. L.
Morkved
,
M.
Lu
,
A. M.
Urbas
,
E. E.
Ehrichs
,
H. M.
Jaeger
,
P.
Mansky
, and
T. P.
Russell
,
Science
273
,
931
(
1996
).
8.
T.
Thurn-Albrecht
,
J.
De Rouchey
,
T. P.
Russell
, and
H. M.
Jaeger
,
Macromolecules
33
,
3250
(
2000
).
9.
G.
Kim
and
M.
Libera
,
Macromolecules
31
,
2569
(
1998
).
10.
K.
Fukunaga
,
H.
Elbs
,
R.
Magerle
, and
G.
Krausch
,
Macromolecules
33
,
947
(
2000
).
11.
R. D.
Peters
,
X. M.
Yang
,
T. K.
Kim
,
B. H.
Sohn
, and
P. F.
Nealey
,
Langmuir
16
,
4625
(
2000
).
12.
E.
Huang
,
P.
Mansky
,
T. P.
Russell
,
C.
Harrison
,
P. M.
Chaikin
,
R. A.
Register
,
C. J.
Hawker
, and
J.
Mays
,
Macromolecules
33
,
80
(
2000
).
13.
J.
Heier
,
J.
Genzer
,
E. J.
Kramer
,
F. S.
Bates
, and
G.
Krausch
,
J. Chem. Phys.
111
,
11101
(
1999
).
14.
L.
Rockford
,
Y.
Liu
,
P.
Mansky
, and
T. R.
Russell
,
Phys. Rev. Lett.
82
,
2602
(
1999
).
15.
M. J.
Fasolka
,
D. J.
Harris
,
A. M.
Mayes
,
M.
Yoon
, and
S. G. J.
Mochrie
,
Phys. Rev. Lett.
79
,
3018
(
1997
).
16.
C.
De Rosa
,
C.
Park
,
E. L.
Thomas
, and
B.
Lotz
,
Nature (London)
405
,
433
(
2000
).
17.
C.
De Rosa
,
C.
Park
,
B.
Lotz
,
J.
Wittmann
,
L. J.
Fetters
, and
E. L.
Thomas
,
Macromolecules
33
,
4791
(
2000
).
18.
C.
Park
,
C.
De Rosa
, and
E. L.
Thomas
,
Macromolecules
34
,
2602
(
2001
).
19.
M. J.
Fasolka
,
P.
Banerjee
,
A. M.
Mayes
,
G.
Pickett
, and
A. C.
Balazs
,
Macromolecules
33
,
5702
(
2000
).
20.
L. H.
Radzilowski
,
B. L.
Carvalho
, and
E. L.
Thomas
,
J. Polym. Sci., Part B: Polym. Phys.
34
,
3081
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.