In tapping-mode atomic force microscopy, nonlinear tip–sample interactions give rise to higher harmonics of the cantilever vibration. We present an electrical circuit to model the atomic force microscope cantilever with its first three flexural eigenmodes. An electrical circuit simulator is used to simulate the tapping-mode operation. Amplitude and phase responses of the third flexural eigenmode are obtained for different sample properties. It is found that amplitude and phase of higher harmonics depend highly on sample properties.

1.
R.
Garcia
,
J.
Tamayo
, and
A. S.
Paulo
,
Surf. Interface Anal.
27
,
312
(
1999
).
2.
J. P.
Cleveland
,
B.
Anczykowski
,
A. E.
Schmid
, and
V. B.
Elings
,
Appl. Phys. Lett.
72
,
2613
(
1998
).
3.
J.
Tamayo
and
R.
Garcia
,
Appl. Phys. Lett.
73
,
2926
(
1998
).
4.
M.
Luna
,
J.
Colchero
, and
A. M.
Baró
,
Appl. Phys. Lett.
72
,
3461
(
1998
).
5.
O.
Sahin
and
A.
Atalar
,
Appl. Phys. Lett.
78
,
2973
(
2001
).
6.
R. W.
Stark
and
W. M.
Heckl
,
Surf. Sci.
457
,
219
(
2000
).
7.
R.
Hillenbrand
,
M.
Stark
, and
R.
Guckenberger
,
Appl. Phys. Lett.
76
,
3478
(
2000
).
8.
HSPICE: Avant! Corporation, 46871 Bayside Parkway, Fremont, CA 94538.
9.
U.
Rabe
,
K.
Janser
, and
W.
Arnold
,
Rev. Sci. Instrum.
67
,
3281
(
1996
).
10.
K.
Yamanaka
and
S.
Nakano
,
Jpn. J. Appl. Phys., Part 1
35
,
3787
(
1996
).
11.
Details of this equation and modeling of the higher order modes are unpublished.
12.
J.
Tamayo
and
R.
Garciao
,
Langmuir
12
,
4430
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.