The long-standing question whether or not oxygen gas is liberated from the perovskite lattice during fatigue of ferroelectric lead zirconate titanate ceramics is addressed. During cycling, the surrounding gas atmosphere of the sample was analyzed continuously by a mass spectrometer. It was found that, in contrast to previous statements in the literature, the oxygen detected originates from air dissolved in the surrounding liquid. An upper limit for oxygen liberation from the sample is given. We conclude that all mechanistical approaches for ferroelectric fatigue based on oxygen liberation are in need of revision.

1.
D. M.
Smyth
,
Ferroelectrics
151
,
115
(
1994
).
2.
W. L.
Warren
,
K.
Vanheusden
,
D.
Dimos
,
G. E.
Pike
, and
B. A.
Tuttle
,
J. Am. Ceram. Soc.
79
,
536
(
1996
).
3.
U.
Robels
and
G.
Arlt
,
J. Appl. Phys.
73
,
3454
(
1993
).
4.
M.
Brazier
,
S.
Mansour
, and
M.
McElfresh
,
Appl. Phys. Lett.
74
,
4032
(
1999
).
5.
M.-J.
Pan
,
S. E.
Park
,
K. A.
Markowski
,
S.
Yoshikawa
, and
C. A.
Randall
,
J. Am. Ceram. Soc.
79
,
2971
(
1996
).
6.
J.
Nuffer
,
D. C.
Lupascu
, and
J.
Rödel
,
Acta Mater.
48
,
3783
(
2000
).
7.
Wacker Silikonöle AK. Manual, Wacker–Chemie GmbH, Munich, Germany (1997).
8.
M. V.
Raymond
and
D. M.
Smyth
,
J. Phys. Chem. Solids
57
,
1507
(
1996
).
9.
J. F.
Scott
and
M.
Dawber
,
Appl. Phys. Lett.
76
,
3801
(
2000
).
10.
M.
Dawber
and
J. F.
Scott
,
Appl. Phys. Lett.
76
,
1060
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.