Ferroelectric strontium bismuth titanate (SrBi4Ti4O15) thin films with a high remanent polarization were produced by a chemical solution deposition method. Pt and IrO2 layers were used as substrates. It was found that ferroelectric SrBi4Ti4O15 films can be successfully fabricated on IrO2: They demonstrate a saturated hysteresis loop at 5 V with remanent polarization (Pr) of 19 μC/cm2 and coercive field (Ps) of 116 kV/cm. SrBi4Ti4O15 films grown on IrO2 show larger and denser grains and controlled surface morphology. The grains are random oriented, while those of films on Pt are mainly c-axis oriented. It is concluded that the high remanent polarization of the films grown on IrO2 originates from the relatively high concentration of a- and b-axis orientations.

1.
C. A.
Araujo
,
J. D.
Cuchiaro
,
L. D.
McMillan
,
M. C.
Scott
, and
J. F.
Scott
,
Nature (London)
374
,
627
(
1995
).
2.
E. C.
Subbarao
,
J. Phys. Chem. Solids
23
,
665
(
1962
).
3.
Y.
Kim
,
H. K.
Chae
,
K. S.
Lee
, and
W. I.
Lee
,
J. Mater. Chem.
8
,
2317
(
1998
).
4.
K.
Amanuma
,
T.
Hase
, and
Y.
Miyasaka
,
Appl. Phys. Lett.
66
,
221
(
1995
).
5.
T. J.
Boyle
,
C. D.
Buchheit
,
M. A.
Rodriguez
,
H. N.
Al-Shareef
,
B. A.
Hernandez
,
B.
Scott
, and
J. W.
Ziller
,
J. Mater. Res.
11
,
2274
(
1996
).
6.
S. D.
Bu
,
B. H.
Park
,
B. S.
Kang
,
S. H.
Kang
,
T. W.
Noh
, and
W.
Jo
,
Appl. Phys. Lett.
75
,
1155
(
1999
).
7.
H. N.
Al-Shareef
,
D.
Dimos
,
T. J.
Boyle
,
W. L.
Warren
, and
B. A.
Tuttle
,
Appl. Phys. Lett.
68
,
690
(
1996
).
8.
B. S.
Kang
,
B. H.
Park
,
S. D.
Bu
,
S. H.
Kang
, and
T. W.
Noh
,
Appl. Phys. Lett.
75
,
2644
(
1999
).
9.
B. H.
Park
,
B. S.
Kang
,
S. D.
Bu
,
T. W.
Noh
,
J.
Lee
, and
W.
Jo
,
Nature (London)
401
,
682
(
1999
).
10.
P. C.
Joshi
and
S. B.
Krupanidhi
,
J. Appl. Phys.
72
,
5827
(
1992
).
11.
K.
Tani
,
T.
Yamanobe
,
H.
Matsuhashi
, and
S.
Nishikawa
,
Jpn. J. Appl. Phys., Part 1
36
,
1460
(
1997
).
12.
T.
Kijima
,
S.
Satoh
,
H.
Matsunaga
, and
M.
Koba
,
Jpn. J. Appl. Phys., Part 1
35
,
1246
(
1996
).
13.
T.
Kijima
,
S.
Satoh
,
H.
Matsunaga
, and
M.
Koba
,
Jpn. J. Appl. Phys., Part 1
35
,
1246
(
1996
).
14.
G. A.
Smolenskii
,
V. A.
Isupov
, and
A. I.
Agranovskaya
,
Sov. Phys. Solid State
3
,
651
(
1961
).
15.
M. V.
Gelfuso
,
D.
Thomazini
, and
J. A.
Eiras
,
J. Am. Ceram. Soc.
82
,
2368
(
1999
).
16.
H.
Irie
and
M.
Miyayama
,
Appl. Phys. Lett.
79
,
251
(
2001
).
17.
H.
Watanabe
,
T.
Mihara
,
H.
Yoshimori
, and
C. A.
Araujo
,
Jpn. J. Appl. Phys., Part 1
34
,
5240
(
1995
).
18.
H.
Oka
,
M.
Hirose
,
T.
Tsukada
,
Y.
Watanabe
, and
T.
Nomura
,
Jpn. J. Appl. Phys., Part 1
39
,
5613
(
2000
).
19.
M.
Tachiki
,
K
Yamamuro
, and
T.
Kobayashi
,
Jpn. J. Appl. Phys., Part 1
35
,
719
(
1996
).
20.
T.
Nakamura
,
Y.
Nakao
,
Y.
Kamisawa
, and
H.
Takasu
,
Jpn. J. Appl. Phys., Part 1
33
,
5207
(
1994
).
21.
H. N.
Al-Shareef
,
K. R.
Bellur
,
A. I.
Kingon
, and
O.
Auciello
,
Appl. Phys. Lett.
66
,
239
(
1995
).
22.
C. S.
Hwang
,
B. T.
Lee
,
H.-J.
Cho
,
K. H.
Lee
,
C. S.
Kang
,
H.
Hideki
,
S. I.
Lee
, and
M. Y.
Lee
,
Appl. Phys. Lett.
71
,
371
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.