We have produced nanotube-in-oil suspensions and measured their effective thermal conductivity. The measured thermal conductivity is anomalously greater than theoretical predictions and is nonlinear with nanotube loadings. The anomalous phenomena show the fundamental limits of conventional heat conduction models for solid/liquid suspensions. We have suggested physical concepts for understanding the anomalous thermal behavior of nanotube suspensions. In comparison with other nanostructured materials dispersed in fluids, the nanotubes provide the highest thermal conductivity enhancement, opening the door to a wide range of nanotube applications.
REFERENCES
1.
2.
R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).
3.
4.
5.
R.
Andrews
, D.
Jacques
, A. M.
Rao
, F.
Derbyshire
, D.
Qian
, X.
Fan
, E. C.
Dickey
, and J.
Chen
, Chem. Phys. Lett.
303
, 467
(1999
).6.
7.
8.
J. A.
Eastman
, S. U. S.
Choi
, S.
Li
, W.
Yu
, and L. J.
Thompson
, Appl. Phys. Lett.
78
, 718
(2001
).9.
S.
Lee
, U. S.
Choi
, S.
Li
, and J. A.
Eastman
, ASME Trans. J. Heat Transfer
121
, 280
(1999
).10.
J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. (Oxford University Press, Cambridge, U.K., 1904), pp. 435–441.
11.
12.
13.
14.
15.
16.
17.
18.
C.-J.
Yu
, A. G.
Richter
, A.
Datta
, M. K.
Durbin
, and P.
Dutta
, Phys. Rev. Lett.
82
, 2326
(1999
).19.
20.
U. S. Choi, in Developments and Applications of Non-Newtonian Flows, edited by D. A. Siginer and H. P. Wang (ASME, New York, 1995), Vol. 231/Vol. 66, pp. 99–105.
21.
H.
Dai
, J. H.
Hafner
, A. G.
Rinzler
, D. T.
Colbert
, and R. E.
Smalley
, Nature (London)
384
, 147
(1996
).22.
A. G.
Rinzler
, J. H.
Hafner
, P.
Nikolaev
, L.
Lou
, S. G.
Kim
, D.
Tomanek
, P.
Nordlander
, D. T.
Colbert
, and R. E.
Smalley
, Science
269
, 1550
(1995
).23.
24.
This content is only available via PDF.
© 2001 American Institute of Physics.
2001
American Institute of Physics
You do not currently have access to this content.