Relaxed SiGe attracted much interest due to the applications for strained Si/SiGe high electron mobility transistor, metal-oxide-semiconductor field-effect transistor, heterojunction bipolar transistor, and other devices. High-quality relaxed SiGe templates, especially those with a low threading dislocation density and smooth surface, are critical for device performance. In this work, SiGe films on low-temperature Si buffer layers were grown by solid-source molecular-beam epitaxy and characterized by atomic force microscope, double-axis x-ray diffraction, and photoluminescence spectroscopy. It was demonstrated that, with the proper growth temperature and Si buffer thickness, the low-temperature Si buffer became tensily strained and reduced the lattice mismatch between the SiGe and the Si buffer layer. This performance is similar to that of the compliant substrate: a thin substrate that shares the mismatch strain in heteroepitaxy. Due to the smaller mismatch, misfit dislocation and threading dislocation densities were lower.

1.
K.
Ismail
,
F. K.
LeGoues
,
K. L.
Saenger
,
M.
Arafa
,
J. O.
Chu
,
P. M.
Mooney
, and
B. S.
Meyerson
,
Phys. Rev. Lett.
73
,
3447
(
1994
).
2.
Y. H.
Xie
,
D.
Monroe
,
E. A.
Fitzgerald
,
P. J.
Silverman
,
F. A.
Theil
, and
G. P.
Watson
,
Appl. Phys. Lett.
63
,
2263
(
1993
).
3.
J. J.
Welser
,
J. L.
Hoyt
, and
J. F.
Gibbons
,
IEEE Electron Device Lett.
15
,
100
(
1994
).
4.
R.
Hull
,
J. C.
Bean
, and
C.
Buescher
,
J. Appl. Phys.
66
,
5837
(
1989
).
5.
L. B.
Freund
,
J. Appl. Phys.
68
,
2073
(
1990
).
6.
P.
Kvan
and
F.
Namavar
,
Appl. Phys. Lett.
58
,
2357
(
1991
).
7.
Y. H.
Luo
,
J. L.
Liu
,
G.
Jin
,
K. L.
Wang
,
C. D.
Moore
,
M. S.
Goorsky
,
C.
Chih
, and
K. N.
Tu
,
J. Electron. Mater.
29
,
950
(
2000
).
8.
A.
Nishida
,
K.
Nakagawa
,
E.
Murakami
, and
M.
Miyao
,
J. Appl. Phys.
71
,
5913
(
1992
).
9.
H.
Chen
,
L. W.
Guo
,
Q.
Cui
,
Q.
Hu
,
Q.
Huang
, and
J. M.
Zhou
,
J. Appl. Phys.
79
,
1167
(
1996
).
10.
P. M.
Mooney
,
J. L.
Jordan-Sweet
,
K.
Ismail
,
J. O.
Chu
,
R. M.
Feenstra
, and
F. K.
LeGoues
,
Appl. Phys. Lett.
67
,
2373
(
1995
).
11.
J. L.
Liu
,
C. D.
Moore
,
G. D.
U’Ren
,
Y. H.
Luo
,
Y.
Lu
,
G.
Jin
,
S. G.
Thomas
,
M. S.
Goorsky
, and
K. L.
Wang
,
Appl. Phys. Lett.
75
,
1586
(
1999
).
12.
E. A.
Stach
,
K. W.
Schwarz
,
R.
Hull
,
F. M.
Ross
, and
R. M.
Tromp
,
Phys. Rev. Lett.
84
,
947
(
2000
).
13.
J. W. P.
Hsu
,
E. A.
Fitzgerald
,
Y. H.
Xie
,
P. J.
Silverman
, and
M. J.
Cardillo
,
Appl. Phys. Lett.
61
,
1293
(
1992
).
14.
H. P.
Tang
,
L.
Vescan
,
C.
Dieker
,
K.
Schmidt
,
H.
Luth
, and
H. D.
Li
,
J. Cryst. Growth
125
,
301
(
1992
).
15.
E. A.
Steinman
,
V. I.
Vdovin
,
T. G.
Yuhova
,
V. S.
Avrutin
, and
N. F.
Izyumskaya
,
Semicond. Sci. Technol.
14
,
582
(
1999
).
16.
G.
Abstreiter
,
H.
Brugger
,
T.
Wolf
,
H.
Jorke
, and
H. J.
Herzog
,
Phys. Rev. Lett.
54
,
2441
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.