We examine the feasibility of ultrafast all-optical switching utilizing a one-dimensional cuprate Sr2CuO3 operable within the optical fiber communication window at room temperature by using the pump-probe spectroscopy and Z-scan measurements. The strength of the interband two-photon absorption in Sr2CuO3 is much larger than that of conventional semiconductors, and is comparable to the largest reported values in π-conjugated polymers. The intensity-dependent refractive index, however, is considerably larger than that of polymeric materials. We further show that the recovery of optical transparency after the photoinjection of carriers lies within picosecond time scale. Large nonlinearity, ultrafast response, and high damage threshold make the one-dimensional cuprate a potential material for multiterabits/second rate all-optical switch.

1.
G. I. Stegeman and A. Miller, in Photonics in Switching, edited by J. E. Midwinter (Academic, San Diego, CA, 1993), Vol. 1, Chap. 5.
2.
M. N.
Islam
,
Phys. Today
47
,
34
(
1994
).
3.
B. I.
Greene
,
J. F.
Mueller
,
J.
Orenstein
,
D. H.
Rapkine
,
S.
Schmitt-Rink
, and
M.
Thakur
,
Phys. Rev. Lett.
61
,
325
(
1988
).
4.
B.
Lawrence
,
W. E.
Torruellas
,
M.
Cha
,
M. L.
Sundheimer
,
G. I.
Stegeman
,
J.
Meth
,
S.
Eternad
, and
G.
Baker
,
Phys. Rev. Lett.
73
,
597
(
1994
).
5.
T. Ogasawara, N. Motoyama, H. Eisaki, S. Uchida, Y. Taguchi, Y. Tokura, and M. Kuwata-Gonokami, Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, Washington, DC, 1999), p. 119.
6.
T.
Ogasawara
,
M.
Ashida
,
N.
Motoyama
,
H.
Eisaki
,
S.
Uchida
,
Y.
Tokura
,
H.
Ghosh
,
A.
Shukla
,
S.
Mazumdar
, and
M.
Kuwata-Gonokami
,
Phys. Rev. Lett.
85
,
2204
(
2000
).
7.
H.
Kishida
,
H.
Matsuzaki
,
H.
Okamoto
,
T.
Manabe
,
M.
Yamashita
,
Y.
Taguchi
, and
Y.
Tokura
,
Nature (London)
405
,
929
(
2000
).
8.
N.
Motoyama
,
H.
Eisaki
, and
S.
Uchida
,
Phys. Rev. Lett.
76
,
3212
(
1996
).
9.
M.
Sheik-Bahae
,
A. A.
Said
,
T.-H.
Wei
,
D. J.
Hagan
, and
E. W.
Van Stryland
,
IEEE J. Quantum Electron.
26
,
760
(
1990
).
10.
The width of the prompt component in Fig. 1(a) is broader than that of the laser pulses because of the strong group velocity dispersion near the absorption edge (see Ref. 6). The width of the prompt component in Fig. 1(b) is ∼0.2 ps, which corresponds to the duration of the laser pulses.
11.
E. W.
Van Stryland
,
M. A.
Woodall
,
H.
Vanherzeele
, and
M. J.
Soileau
,
Opt. Lett.
10
,
490
(
1985
).
12.
H.
Suzuura
,
H.
Yasuhara
,
A.
Furusaki
,
N.
Nagaosa
, and
Y.
Tokura
,
Phys. Rev. Lett.
76
,
2579
(
1996
).
13.
F.
Bassani
and
S.
Scandolo
,
Phys. Rev. B
44
,
8446
(
1991
).
14.
D. M.
Gill
,
B. A.
Block
,
C. W.
Conrad
,
B. W.
Wessels
, and
S. T.
Ho
,
Appl. Phys. Lett.
69
,
2968
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.