A pyrolysis route has been used to synthesize arrays of highly aligned BxCyNz nanotubes in bulk. The structure and composition of the product were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and electron energy-loss spectroscopy. The length and diameter of the nanotubes are quite uniform in a large area of the reaction zone. The sizes of the aligned BxCyNz nanotubes from the whole reaction zone are 10–30 μm in length and 20–140 nm in diameter. The x/z ratio of BxCyNz nanotubes for most nanotubes is about 1:1. The x/y ratio of BxCyNz nanotubes is up to 0.6. Within one nanotube, the x/y ratio is usually heterogeneous. The growth mechanism is also discussed.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
N. G.
Chopra
,
R. J.
Luyken
,
K.
Cherrey
,
V. H.
Crespi
,
M. L
Cohen
,
S. G.
Louie
, and
A.
Zettl
,
Science
269
,
966
(
1995
).
3.
X.
Blase
,
J.-Ch.
Charlier
,
A.
De Vita
, and
R.
Car
,
Appl. Phys. A: Mater. Sci. Process.
68
,
293
(
1999
).
4.
Ph.
Redlich
,
J.
Loeffler
,
P. M.
Ajayan
,
J.
Bill
,
F.
Aldinger
, and
M.
Rühle
,
Chem. Phys. Lett.
260
,
465
(
1996
).
5.
W.
Han
,
Y.
Bando
,
K.
Kurashima
, and
T.
Sato
,
Appl. Phys. Lett.
73
,
3085
(
1998
).
6.
K.
Suenaga
,
C.
Colliex
,
N.
Demoncy
,
A.
Loiseau
,
H.
Pascard
, and
F.
Willaime
,
Science
278
,
653
(
1997
).
7.
M.
Terrones
,
A. M.
Benito
,
C.
Manteca-Diego
,
W. K.
Hsu
,
O. I.
Osman
,
J. P.
Hare
,
D. G.
Reid
,
H.
Terrones
,
A. K.
Cheetham
,
K.
Prassides
,
H. W.
Kroto
, and
D. R. W.
Walton
,
Chem. Phys. Lett.
257
,
576
(
1996
).
8.
Y.
Zhang
,
H.
Gu
,
K.
Suenaga
, and
S.
Iijima
,
Chem. Phys. Lett.
279
,
264
(
1997
).
9.
W.
Han
,
Y.
Bando
,
K.
Kurashima
, and
T.
Sato
,
Jpn. J. Appl. Phys., Part 1
38
,
755
(
1999
).
10.
Y.
Miyamoto
,
M. L.
Cohen
, and
S. G.
Louie
,
Solid State Commun.
102
,
605
(
1997
).
11.
R.
Sen
,
B. C.
Satishkumar
,
A.
Govingaraj
,
K. R.
Harikumar
,
G.
Raina
,
J.
Zhang
,
A. K.
Cheetham
, and
C. N. R.
Rao
,
Chem. Phys. Lett.
287
,
671
(
1998
).
12.
K.
Suenaga
,
M. P.
Johansson
,
N.
Hellgren
,
E.
Broitman
,
L. R.
Wallenberg
,
C.
Colliex
,
J. E.
Sundgren
, and
L.
Hultman
,
Chem. Phys. Lett.
300
,
695
(
1999
).
13.
M.
Terrones
,
H.
Terrones
,
N.
Grobert
,
W. K.
Hsu
,
Y. Q.
Zhu
,
J. P.
Hare
,
H. W.
Kroto
,
D. R. M.
Walton
,
P.
Redlich
,
M.
Ruhle
,
J. P.
Zhang
, and
A. K.
Cheetham
,
Appl. Phys. Lett.
75
,
3932
(
1999
).
14.
W.
Han
,
Ph.
Kohler-Redlich
,
T.
Seeger
,
F.
Ernst
,
M.
Ruhle
,
N.
Grobert
,
W. K.
Hsu
,
B. H.
Chang
,
Y. Q.
Zhu
,
H. W.
Kroto
,
D. R. M.
Walton
,
M.
Terrones
, and
H.
Terrones
,
Appl. Phys. Lett.
77
,
1807
(
2000
).
15.
K. B.
Shelimov
and
M.
Moskovits
,
Chem. Phys.
12
,
250
(
2000
).
16.
X.
Bai
,
E.
Wang
,
J.
Yu
, and
H.
Yang
,
Appl. Phys. Lett.
77
,
67
(
2000
).
17.
M.
Terrones
,
N.
Grobert
,
J.
Olivares
,
J. P.
Zhang
,
H.
Terrones
,
K.
Kordatos
,
H. K.
Hsu
,
J. P.
Hare
,
P. D.
Townsend
,
K.
Prassides
,
A. K.
Cheetham
,
H. W.
Kroto
, and
D. R. M.
Walton
,
Nature (London)
388
,
52
(
1997
).
18.
C. N. R.
Rao
,
R.
Sen
,
B. C.
Satishkumar
, and
J.
Govindaraj
,
J. Chem. Soc. Chem. Commun.
15
,
1525
(
1998
).
19.
W.
Han
,
S.
Fan
,
Q.
Li
, and
Y.
Hu
,
Science
277
,
1287
(
1997
).
20.
S.
Huang
,
L.
Dai
, and
A. W. H.
Mau
,
J. Phys. Chem. B
103
,
4223
(
1999
).
21.
M.
Yudasaka
,
R.
Kikuchi
,
T.
Matsui
,
Y.
Ohki
, and
S.
Yoshimura
,
Appl. Phys. Lett.
67
,
2477
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.