The effect of hydrogen passivation on the photoluminescence from Si nanocrystals prepared in SiO2 by ion implantation and annealing is examined as a function of nanocrystal size (implant fluence). Passivation is shown to produce a significant increase in emission intensities as well as a redshift of spectra, both of which increase with increasing fluence. These results are shown to be consistent with a model in which larger nanocrystals are assumed to contain more nonradiative defects (i.e., the defect concentration is assumed to be proportional to the nanocrystal surface area or volume). Since this results in a smaller fraction of larger nanocrystals contributing to the initial luminescence, emission spectra are initially blueshifted relative to that that might be expected from the physical nanocrystal size distribution. The contribution from larger crystallites is then disproportionately increased by passivation resulting in the observed redshift.

1.
L. T.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
2.
G.
Allan
,
C.
Delerue
, and
M.
Lannoo
,
Phys. Rev. Lett.
76
,
2961
(
1996
).
3.
G.
Qin
and
G. G.
Qin
,
J. Appl. Phys.
82
,
2572
(
1997
).
4.
T.
Shimizu-Iwayama
,
N.
Kurumado
,
D. E.
Hole
, and
P. D.
Townsend
,
J. Appl. Phys.
83
,
6018
(
1998
).
5.
S.
Iyer
,
R. T.
Collins
, and
L. T.
Graham
,
Mater. Res. Soc. Symp. Proc.
256
,
1
(
1991
).
6.
E.
Edelberg
,
S.
Bergh
,
R.
Naone
,
M.
Hall
, and
E. S.
Aydil
,
J. Appl. Phys.
81
,
2410
(
1997
).
7.
P.
Mutti
,
G.
Ghisloti
,
S.
Bertoni
,
L.
Bonoldi
,
G. F.
Cerofolni
,
L.
Meda
,
E.
Grilli
, and
M.
Guzzi
,
Appl. Phys. Lett.
66
,
851
(
1995
).
8.
I. J. R.
Baumvol
,
E. P.
Gusev
,
F. C.
Stedile
,
F. L.
Freire
, Jr.
,
M. L.
Green
, and
D.
Brasen
,
Appl. Phys. Lett.
72
,
4
(
1998
).
9.
K. S.
Min
,
K. V.
Shcheglov
,
C. M.
Yang
,
H. A.
Atwater
,
M. L.
Brongersma
, and
A.
Polman
,
Appl. Phys. Lett.
69
,
2033
(
1996
).
10.
S. P.
Withrow
,
C. W.
White
,
A.
Meldrum
,
J. D.
Budai
,
D. M.
Hembree
, Jr.
, and
J. C.
Barbour
,
J. Appl. Phys.
86
,
1
(
1999
).
11.
E.
Cartier
,
J. H.
Stathis
, and
D. A.
Buchanan
,
Appl. Phys. Lett.
63
,
1510
(
1993
).
12.
D.
Fink
,
J.
Krauser
,
D.
Nagengast
,
T. Almeida
Murphy
,
J.
Erxmeier
,
L.
Palmetshofer
,
D.
Bräunig
, and
A.
Weidinger
,
Appl. Phys. A: Mater. Sci. Process.
61
,
381
(
1995
).
13.
S. M.
Myers
,
M. I.
Baskes
,
H. K.
Birnbaum
,
J. W.
Corbett
,
G. G.
DeLeo
,
S. K.
Estreicher
,
E. E.
Haller
,
P.
Jena
,
N. M.
Johnson
,
R.
Kirchheim
,
S. J.
Pearton
, and
M. J.
Stavola
,
Rev. Mod. Phys.
64
,
559
(
1992
).
14.
C.
Tsai
,
K.-H.
Li
,
D. S.
Kinosky
,
R.-Z.
Qian
,
T.-C.
Hsu
,
J. T.
Irby
,
S. K.
Banerjee
,
A. F.
Tasch
,
J. C.
Campbell
,
B. K.
Hance
, and
J. M.
White
,
Appl. Phys. Lett.
60
,
1700
(
1992
).
15.
S.
Cheylan
and
R. G.
Elliman
,
Appl. Phys. Lett.
78
,
1225
(
2001
).
16.
S. Cheylan and R. G. Elliman, Nucl. Instrum. Methods (in press).
17.
The effect of preferential passivation can be assessed by applying a weighting factor proportional to r2 and r3 to calculated spectra, such as those in:
Ranjan
,
V. A.
Singh
, and
G. C.
John
,
Phys. Rev. B
58
,
1158
(
1998
).
18.
M. V.
Wolkin
,
J.
Jorne
,
P. M.
Fauchet
,
G.
Allan
, and
C.
Delerue
,
Phys. Rev. Lett.
82
,
197
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.