Permanent holographic storage has been demonstrated in a photopolymerizable organically modified silica glass. The glass was prepared by dispersing a titanocene photoinitiator and a high refractive index acrylic monomer in a porous silica matrix. This glass exhibits unprecedented sensitivity and refractive index change upon a moderate exposure to green light and can be fabricated in thickness up to several millimeters. A photopolymerizable storage medium of such a thickness with good holographic properties is needed for practical holographic storage devices. Lack of such medium has been considered the main obstacle in development of write-once holographic memories. In our glass, we have stored permanent volume holograms of diffraction efficiency approaching 100% and refractive index modulation up to 4.5×10−3, making this photopolymerizable material suitable for use in holographic data storage.

1.
D.
Psaltis
,
F.
Mok
,
Sci. Am.
273
,
70
(
1995
).
2.
G. T. Sincerbox, in Current Trends in Optics, edited by J. C. Dainty (Academic, London, 1994), Chap. 14.
3.
R. A.
Lessard
and
G.
Manivannan
,
Proc. SPIE
2405
,
2
(
1995
).
4.
D. H.
Close
,
A. D.
Jacobson
,
J. D.
Margerum
,
R. G.
Brault
, and
F. J.
McClung
,
Appl. Phys. Lett.
14
,
159
(
1969
).
5.
U.-S.
Rhee
,
H. J.
Caufield
,
J.
Shamir
,
C. S.
Vikram
, and
M. M.
Mirsalehi
,
Opt. Eng.
32
,
1839
(
1993
).
6.
J. F.
Heanue
,
M. C.
Bashaw
, and
L.
Hesselink
,
Science
265
,
749
(
1994
).
7.
H.
Coufal
,
Nature (London)
393
,
628
(
1998
).
8.
C. J. Brinker and G. W. Scherer, Sol–Gel Science, The Physics and Chemistry of Sol–Gel Processing (Academic, San Diego, 1990).
9.
J. J.
Ebelmen
,
C. R. Acad. Sci.
19
,
398
(
1844
).
10.
H.
Krug
and
H.
Schmidt
,
New J. Chem.
18
,
1125
(
1994
).
11.
B. M. Monroe and W. K. Smothers, in Polymers for Lightwave and Integrated Optics, Technology and Applications, edited by L. A. Hornak (Marcel Dekker, New York, 1992), Chap. 5.
12.
M. L.
Schilling
,
V. L.
Colvin
,
L.
Dhar
,
A. L.
Harris
,
F. C.
Schilling
,
H. E.
Katz
,
T.
Wysocki
,
A.
Hale
,
L. L.
Blyler
, and
C.
Boyd
,
Chem. Mater.
11
,
247
(
1999
).
13.
W. L.
Wilson
,
K.
Curtis
,
M.
Tackitt
,
A.
Hill
,
A.
Hale
,
M.
Schilling
,
C.
Boyd
,
S.
Campbell
,
L.
Dhar
, and
A.
Harris
,
Opt. Quantum Electron.
32
,
393
(
2000
).
14.
J. G. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).
15.
V. L.
Colvin
,
R. G.
Larson
,
A. L.
Harris
, and
M. L.
Schilling
,
J. Appl. Phys.
81
,
5913
(
1997
).
16.
A. B. Cohen, P. Walker, in Imaging Processes and Materials: Neblette’s Eighth Edition, edited by J. Sturge (Van Nostrand, New York, 1989).
17.
H.
Kogelnik
,
Bell Syst. Tech. J.
48
,
2909
(
1969
).
18.
C.
Decker
and
A. D.
Jenkin
,
Macromolecules
18
,
1241
(
1985
).
19.
P. Cheben, Ph.D. thesis, Complutense University of Madrid, 1996.
20.
J.
Marotz
,
Appl. Phys. B: Photophys. Laser Chem.
37
,
181
(
1985
).
21.
G. J.
Steckman
,
I.
Solomatine
,
G.
Zhou
, and
D.
Psaltis
,
Opt. Lett.
23
,
1310
(
1998
).
22.
P.
Cheben
,
T.
Belenguer
,
A.
Núñez
,
D.
Levy
, and
F.
del Monte
,
Opt. Lett.
21
,
1857
(
1996
).
23.
W. S.
Colburn
,
Appl. Opt.
10
,
1636
(
1971
).
24.
G.
Zhao
,
P.
Mouroulis
,
J. Mod. Opt.
41
,
1929
(
1994
).
25.
C. R.
Kagan
,
T. D.
Harris
,
A. L.
Harris
, and
M. L.
Schilling
,
J. Chem. Phys.
108
,
6892
(
1998
).
26.
W. J.
Tomlinson
,
E. A.
Chandross
,
H. P.
Weber
, and
G. G.
Aumiller
,
Appl. Opt.
15
,
534
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.