Cathodoluminescence (CL) spectroscopy shows that even relatively low-dose keV light-ion bombardment (corresponding to the generation of ∼5×1019 vacancies/cm3) of wurtzite GaN results in a dramatic quenching of visible CL emission. Postimplantation annealing at temperatures up to 1050 °C generally causes a partial recovery of measured CL intensities. However, CL depth profiles indicate that, in most cases, such a recovery results from CL emission from virgin GaN, beyond the implanted layer due to a reduction in the extent of light absorption within the implanted layer. In this case, CL emission from the implanted layer remains completely quenched even after such an annealing. These results show that an understanding of the effects of ion bombardment and postimplantation annealing on luminescence generation and light absorption is required for a correct interpretation of luminescence spectra of GaN optically doped by keV ion implantation.

1.
See, for example, recent reviews:
S. J.
Pearton
,
J. C.
Zolper
,
R. J.
Shul
, and
F.
Ren
,
J. Appl. Phys.
86
,
1
(
1999
);
S. C.
Jain
,
M.
Willander
,
J.
Narayan
, and
R.
Van Overstraeten
,
J. Appl. Phys.
87
,
965
(
2000
), and references therein.
2.
J. I.
Pankove
and
J. A.
Hutchby
,
J. Appl. Phys.
47
,
5387
(
1976
).
3.
E.
Silkowski
,
Y. K.
Yeo
,
R. L.
Hengehold
,
M. A.
Khan
,
T.
Lei
,
K.
Evans
, and
C.
Cerny
,
Mater. Res. Soc. Symp. Proc.
395
,
813
(
1996
).
4.
B. J.
Pong
,
C. J.
Pan
,
Y. C.
Teng
,
G. C.
Chi
,
W.-H.
Li
,
K. C.
Lee
, and
C.-H.
Lee
,
J. Appl. Phys.
83
,
5992
(
1998
).
5.
A.
Suvkhanov
,
J.
Hunn
,
W.
Wu
,
D.
Thomson
,
K.
Price
,
N.
Parikh
,
E.
Irene
,
R. F.
Davis
, and
L.
Krasnobaev
,
Mater. Res. Soc. Symp. Proc.
512
,
475
(
1998
).
6.
C.
Ronning
,
E. P.
Carlson
,
D. B.
Thomson
, and
R. F.
Davis
,
Appl. Phys. Lett.
73
,
1622
(
1998
).
7.
S. O.
Kucheyev
,
J. S.
Williams
,
C.
Jagadish
,
J.
Zou
,
M.
Toth
,
M. R.
Phillips
,
H. H.
Tan
,
G.
Li
, and
S. J.
Pearton
,
Mater. Res. Soc. Symp. Proc.
622
,
T7
.
9
(
2000
).
8.
K.
Fleischer
,
M.
Toth
,
M. R.
Phillips
,
J.
Zou
,
G.
Li
, and
S. J.
Chua
,
Appl. Phys. Lett.
74
,
1114
(
1999
).
9.
See, for example, a review by
J. W.
Orton
and
C. T.
Foxon
,
Rep. Prog. Phys.
61
,
1
(
1998
).
10.
K.
Kanaya
and
S.
Okayama
,
J. Phys. D
5
,
43
(
1972
).
11.
However, in as-grown GaN, the measured intensity of near-gap emission decreases with increasing electron beam energy due to efficient self-absorption, and the YL intensity increases with beam energy due to a corresponding increase in the concentration of YL centers towards the GaN/sapphire interface (see, for example, Ref. 8) and/or due to the saturation of YL emission.
12.
Note that the sample shown in Fig. 1 was bombarded to twice the dose (1014cm−2) of the sample shown in Fig. 2 (5×1013cm−2). Therefore, the effect of the quenching of CL emission coming from the implanted layer is even more pronounced in Fig. 1.
13.
J. P.
Biersack
and
L. G.
Haggmark
,
Nucl. Instrum. Methods
174
,
257
(
1980
).
14.
After such an annealing of the sample from Fig. 2, the relative intensity of near-gap emission (measured with an electron beam energy of 20 keV) in the implanted part to that in the virgin part of the sample recovered from ∼4% in the as-implanted sample to ∼14% in the annealed one.
15.
GaN bombarded under implant conditions of this study has a yellowish–brown appearance. The 1050 °C annealing treatment significantly decreases the efficiency with which visible light is absorbed in the implanted layer, making implanted GaN appear as transparent as virgin GaN.
16.
S. O. Kucheyev, M. Toth, M. R. Phillips, J. S. Williams, C. Jagadish, and G. Li (unpublished).
17.
S. O.
Kucheyev
,
J. S.
Williams
,
C.
Jagadish
,
J.
Zou
, and
G.
Li
,
Phys. Rev. B
62
,
7510
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.