We report on the luminescence properties of AlInGaN/In0.08Ga0.92N quantum wells (QWs) subjected to a variable amount of lattice mismatch induced strain, including wells with zero strain, compressive strain, and tensile strain. The primary peak emission energy of a 3 nm In0.08Ga0.92N QW was redshifted by 236 meV as the stress in the well was changed from −0.86% (compressive) to 0.25% (tensile). It was also found that the photoluminescence intensity of quantum wells decreased with increasing strain. A lattice matched 9 nm QW exhibited a luminescence intensity that is three times greater than its highly strained counterpart. The potential applications of this strain engineering will be discussed.

This content is only available via PDF.
You do not currently have access to this content.