We present the experimental characterization of a leadless (floating) double-dot system and a leadless quantum-dot cellular automata cell, where aluminum metal islands are connected to the environment only by capacitors. Here, single electron charge transfer can be accomplished only by the exchange of an electron between the dots. The charge state of the dots is monitored using metal islands configured as electrometers. We show improvements in the cell performance relative to leaded dots, and discuss possible implications of our leadless design to the quantum-dot cellular automata logic implementation.

1.
C. S.
Lent
and
P. D.
Tougaw
,
Proc. IEEE
85
,
541
(
1997
).
2.
C. S.
Lent
,
P. D.
Tougaw
, and
W.
Porod
,
Appl. Phys. Lett.
62
,
714
(
1993
).
3.
C. S.
Lent
and
P. D.
Tougaw
,
J. Appl. Phys.
75
,
4077
(
1994
).
4.
A. O.
Orlov
,
I.
Amlani
,
G. H.
Bernstein
,
C. S.
Lent
, and
G. L.
Snider
,
Science
277
,
928
(
1997
).
5.
I.
Amlani
,
A. O.
Orlov
,
G. L.
Snider
,
C. S.
Lent
, and
G. H.
Bernstein
,
Appl. Phys. Lett.
72
,
2179
(
1998
).
6.
A. O.
Orlov
,
I.
Amlani
,
G.
Toth
,
C. S.
Lent
,
G. H.
Bernstein
, and
G. L.
Snider
,
Appl. Phys. Lett.
74
,
2875
(
1999
).
7.
I.
Amlani
,
A. O.
Orlov
,
G.
Toth
,
G. H.
Bernstein
,
C. S.
Lent
, and
G. L.
Snider
,
Science
284
,
289
(
1999
).
8.
A. O.
Orlov
,
I.
Amlani
,
G.
Toth
,
C. S.
Lent
,
G. H.
Bernstein
, and
G. L.
Snider
,
Appl. Phys. Lett.
73
,
2787
(
1998
).
9.
I.
Amlani
,
A. O.
Orlov
,
G. L.
Snider
,
C. S.
Lent
, and
G. H.
Bernstein
,
Appl. Phys. Lett.
71
,
1730
(
1997
).
10.
T. A.
Fulton
and
G. J.
Dolan
,
Phys. Rev. Lett.
59
,
109
(
1987
).
11.
Single Charge Tunneling, edited by H. Grabert and M. H. Devoret (Plenum, New York, 1992), Chaps. 1 and 2.
12.
G. L.
Snider
,
A. O.
Orlov
,
I.
Amlani
,
X.
Zuo
,
G. H.
Bernstein
,
C. S.
Lent
,
J. L.
Merz
, and
W.
Porod
,
J. Vac. Sci. Technol. A
17
,
1394
(
1999
).
13.
The technique we use to compensate for the effect of parasitic cross capacitances in the device also compensates for the monotonic change in potential on the dots. Therefore only the sawtooth pattern associated with the single-electron switching is seen.
14.
Ekink is the characteristic kink energy of the device. We define the kink energy as the energy required to change the polarization of a cell from one binary state to the opposite. This energy, which depends on the coupling capacitance Cc and the dot capacitances, must be much greater than the thermal energy in order to observe a complete polarization change.
This content is only available via PDF.
You do not currently have access to this content.