The intermetallic compound NiAl (50:50 at. %) has been shown to be a low-resistance ohmic contact to n-GaN and n-AlGaN. NiAl contacts on n-GaN (n=2.5×1017cm−3) had a specific contact resistance of 9.4×10−6Ω cm2 upon annealing at 850 °C for 5 min. NiAl contacts annealed at 900 °C for 5 min in n-Al0.12Ga0.88N (n=2.4×1018cm−3) and n-Al0.18Ga0.82N (n=2.7×1018cm−3) had specific contact resistances of 2.1×10−5Ω cm2 and 4.7×10−5Ω cm2, respectively. Additionally, these contacts were subjected to long-term annealing at 600 °C for 100 h. On n-GaN, the contact specific contact resistance degraded from 9.4×10−6Ω cm2 to 5.3×10−5Ω cm2 after the long-term anneal. Contacts to n-Al0.18Ga0.82N showed only slight degradation with a change in contact resistance, from 4.7×10−5Ω cm2 to 9.2×10−5Ω cm2. These results demonstrate the NiAl has great promise as a stable, low-resistance contact, particularly to n-AlGaN used in high-temperature applications.

1.
S. J.
Pearton
,
J. C.
Zolper
,
R. J.
Shul
, and
F.
Ren
,
J. Appl. Phys.
86
,
1
(
1999
).
2.
Q. Z.
Liu
and
S. S.
Lau
,
Solid-State Electron.
42
,
677
(
1998
).
3.
J. S.
Foresi
and
T. D.
Moustakas
,
Appl. Phys. Lett.
62
,
2859
(
1993
).
4.
B. P.
Luther
,
S. E.
Mohney
, and
T. N.
Jackson
,
Semicond. Sci. Technol.
13
,
1322
(
1998
).
5.
M. W.
Cole
,
D. W.
Eckar
,
W. Y.
Han
,
R. L.
Pfeffer
,
T.
Monahan
,
F.
Ren
,
C.
Yuan
,
R. A.
Stall
,
S. J.
Pearton
,
Y.
Li
, and
Y.
Lu
,
J. Appl. Phys.
80
,
278
(
1996
).
6.
J. D.
Guo
,
C. I.
Lin
,
M. S.
Feng
,
F. M.
Pan
,
G. C.
Chi
, and
C. T.
Lee
,
Appl. Phys. Lett.
68
,
235
(
1996
).
7.
D. B.
Ingerly
,
Y. A.
Chang
,
N. R.
Perkins
, and
T. F.
Kuech
,
Appl. Phys. Lett.
70
,
108
(
1997
).
8.
A. T.
Ping
,
M. A.
Khan
, and
I.
Adesida
,
J. Electron. Mater.
25
,
819
(
1996
).
9.
C.-H.
Lee
,
M.-Y.
Yeh
,
C.-D.
Tsai
, and
Y.-T.
Lyu
,
J. Electron. Mater.
26
,
262
(
1997
).
10.
M. E.
Lin
,
Z.
Ma
,
F. Y.
Huang
,
Z. F.
Fan
,
L. H.
Allen
, and
H.
Morkoc
,
Appl. Phys. Lett.
64
,
1003
(
1994
).
11.
Z.
Fan
,
S. N.
Mohammad
,
W.
Kim
,
O.
Aktas
,
A. E.
Botcharev
, and
H.
Morkoc
,
Appl. Phys. Lett.
68
,
1672
(
1996
).
12.
S. M.
Gasser
,
E.
Kolawa
, and
M.-A.
Nicolet
,
J. Electron. Mater.
28
,
949
(
1999
).
13.
S.
Ruvimov
,
Z.
Liliental-Weber
,
J.
Washburn
,
K. J.
Duxstad
,
E. E.
Haller
,
Z.-F.
Fan
,
S. S. N.
Mohammad
,
W.
Kim
,
A. E.
Botcharev
, and
H.
Morkoc
,
Appl. Phys. Lett.
69
,
1556
(
1996
).
14.
B. P.
Luther
,
J. M.
DeLucca
,
S. E.
Mohney
, and
R. F.
Karlicek
, Jr.
,
Appl. Phys. Lett.
71
,
3859
(
1997
).
15.
B. P.
Luther
,
S. E.
Mohney
,
T. N.
Jackson
,
M. A.
Khan
,
Q.
Chen
, and
J. W.
Yang
,
Appl. Phys. Lett.
70
,
57
(
1997
).
16.
D.
Qiao
,
L. S.
Yu
,
S. S.
Lau
,
J. M.
Redwing
,
J. Y.
Lin
, and
H. X.
Jiang
,
J. Appl. Phys.
87
,
801
(
2000
).
17.
M. R. H.
Khan
,
H.
Nakayama
,
T.
Detchprohm
,
K.
Hiramatsu
, and
N.
Sawaki
,
Solid-State Electron.
41
,
287
(
1997
).
18.
D.
Qiao
,
Z. F.
Guan
,
J.
Carlton
,
S. S.
Lau
, and
G. J.
Sullivan
,
Appl. Phys. Lett.
74
,
2652
(
1999
).
19.
W.
Huang
and
Y. A.
Chang
,
J. Phase Equilib.
19
,
361
(
1998
).
20.
J. Doychak, in Intermetallic Compounds, edited by J. A. Westbrock and R. L. Fleischer (Wiley, New York, 1994), p. 977.
21.
D.
Swenson
,
C.-H.
Jan
, and
Y. A.
Chang
,
J. Appl. Phys.
84
,
4332
(
1998
).
22.
C.-P.
Chen
,
C.-F.
Lin
,
D.
Swenson
,
C. R.
Kao
,
C.-H.
Jan
, and
Y. A.
Chang
,
J. Vac. Sci. Technol. B
17
,
432
(
1999
).
23.
D. Y.
Chen
,
Y. A.
Chen
, and
D.
Swenson
,
J. Appl. Phys.
81
,
297
(
1997
).
24.
G. S.
Marlow
and
M. B.
Das
,
Solid-State Electron.
25
,
91
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.