Isothermal annealing experiments with switched gate bias have been performed to determine the properties of the latent interface-trap buildup during postirradiation annealing of metal–oxide–semiconductor transistors. It has been found that a bias-independent process occurs until the start of the latent interface-trap buildup. During the buildup itself, oxide-trap charge is not permanently neutralized, but is temporarily compensated.

1.
T. P. Ma and P. V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits (Wiley, New York, 1989).
2.
J. R.
Schwank
,
D. M.
Fleetwood
,
M. R.
Shaneyfelt
, and
P. S.
Winokur
,
IEEE Electron Device Lett.
13
,
203
(
1992
);
J. R.
Schwank
,
D. M.
Fleetwood
,
M. R.
Shaneyfelt
,
P. S.
Winokur
,
C. L.
Axness
, and
L. C.
Riewe
,
IEEE Trans. Nucl. Sci.
39
,
1953
(
1992
).
3.
D. M.
Fleetwood
,
W. L.
Warren
,
J. R.
Schwank
,
P. S.
Winokur
,
M. R.
Shaneyfelt
, and
L. C.
Riewe
,
IEEE Trans. Nucl. Sci.
42
,
1698
(
1995
).
4.
M. J.
Johnson
and
D. M.
Fleetwood
,
Appl. Phys. Lett.
70
,
1158
(
1997
);
D. M.
Fleetwood
,
M. J.
Johnson
,
T. L.
Meisenheimer
,
P. S.
Winokur
,
W. L.
Warren
, and
S. C.
Witczak
,
IEEE Trans. Nucl. Sci.
44
,
1810
(
1997
).
5.
M.
Pejovic
and
G.
Ristic
,
Solid-State Electron.
41
,
715
(
1997
);
G. S.
Ristic
,
M. M.
Pejovic
, and
A. B.
Jaksic
,
J. Appl. Phys.
83
,
2994
(
1998
);
A.
Jaksic
,
M.
Pejovic
,
G.
Ristic
, and
S.
Rakovic
,
IEEE Trans. Nucl. Sci.
45
,
1365
(
1998
);
G. S.
Ristic
,
M. M.
Pejovic
, and
A. B.
Jaksic
,
J. Appl. Phys.
87
,
3468
(
2000
).
6.
D. B.
Brown
and
N. S.
Saks
,
J. Appl. Phys.
70
,
3734
(
1991
), and references therein.
7.
P. J.
McWhorter
and
P. S.
Winokur
,
Appl. Phys. Lett.
48
,
133
(
1986
).
8.
A.
Jaksic
and
P.
Igic
,
Electron. Lett.
32
,
2183
(
1996
), and references therein.
9.
We will divide postirradiation annealing into three phases, according to different patterns of ΔNit behavior observed: phase 1, from immediately after irradiation to the beginning of the rapid increase in ΔNit(ΔNit is approximately constant); phase 2, from the end of phase 1 to the moment when ΔNit reaches its maximum value (ΔNit increases rapidly); and phase 3, from the end of phase 2 to the end of the experiment (ΔNit decreases).
10.
A. B.
Jaksic
,
M. M.
Pejovic
, and
G. S.
Ristic
,
IEEE Trans. Nucl. Sci.
47
,
659
(
2000
);
A. B.
Jaksic
,
G. S.
Ristic
, and
M. M.
Pejovic
,
IEEE Trans. Nucl. Sci.
47
,
580
(
2000
).
11.
A. J.
Lelis
and
T. R.
Oldham
,
IEEE Trans. Nucl. Sci.
41
,
1835
(
1994
), and references therein.
12.
P. J.
McWhorter
,
S. L.
Miller
, and
W. M.
Miller
,
IEEE Trans. Nucl. Sci.
37
,
1682
(
1990
).
13.
P. M.
Lenahan
and
P. V.
Dressendorfer
,
J. Appl. Phys.
55
,
3495
(
1984
).
14.
R. E.
Stahlbush
,
A. H.
Edwards
,
D. L.
Griscom
, and
B. J.
Mrstik
,
J. Appl. Phys.
73
,
658
(
1993
);
J. F.
Conley
, Jr.
and
P. M.
Lenehan
,
IEEE Trans. Nucl. Sci.
40
,
1335
(
1993
).
15.
R. E. Stahlbush, in The Physics and Chemistry of SiO2and theSi–SiO2interface—3, edited by H. Z. Massoud, E. H. Poindexter, and C. R. Helms (Plenum, New York, 1996); p. 525, and references therein.
16.
P. M.
Lenahan
,
J. J.
Mele
,
J. F.
Conley
, Jr.
,
R. K.
Lowry
, and
D.
Woodbury
,
IEEE Trans. Nucl. Sci.
46
,
1534
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.