We have grown non-c-oriented SrBi2Ta2O9 (SBT) epitaxial thin films with well-defined (116) orientation by pulsed laser deposition on yttria-stabilized zirconia-buffered (YSZ-buffered) Si(100) substrates covered with electrically conductive (110)-oriented SrRuO3 (SRO) bottom electrodes. The epitaxial growth of (110)-oriented SRO films on (100)-oriented YSZ on Si(100) was confirmed both by x-ray pole figures and transmission electron microscopy (TEM) analyses showing a diagonal-type rectangle-on-cube epitaxy of SRO on YSZ with respect to the substrate and yielding specific multiple twins which originate from the particular in-plane positioning of SRO on YSZ. Cross-sectional TEM analyses revealed a roof-like morphology at the SBT/SRO interface while the other interfaces are sharp. The ferroelectric measurements of the (116)-oriented SBT films show a remanent polarization (2Pr) of 6.8 μC/cm2 and a coercive field (2Ec) of 142 kV/cm for a maximum applied electric field of 283 kV/cm. A comparable hysteresis loop recorded from local piezoresponse by an atomic force microscope working in a piezoelectric mode has also been obtained.

1.
J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000), p. 193.
2.
A.
Gruverman
,
Appl. Phys. Lett.
75
,
1452
(
1999
).
3.
H. N. Lee, A. Visinoiu, S. Senz, C. Harnagea, A. Pignolet, D. Hesse, and U. Gösele, J. Appl. Phys. (to be published).
4.
J.
Lettieri
,
M. A.
Zurbuchen
,
Y.
Jia
,
D. G.
Schlom
,
S. K.
Streiffer
, and
M. E.
Hawley
,
Appl. Phys. Lett.
76
,
2937
(
2000
).
5.
S. E.
Moon
,
T. K.
Song
,
S. B.
Back
,
S.-I.
Kwun
,
J.-G.
Yoon
, and
J. S.
Lee
,
Appl. Phys. Lett.
75
,
2827
(
1999
).
6.
K.
Ishikawa
and
H.
Funakubo
,
Appl. Phys. Lett.
75
,
1970
(
1999
).
7.
J.
Lettieri
,
Y.
Jia
,
M.
Urbanik
,
C. I.
Weber
,
J-P.
Maria
,
D. G.
Schlom
,
H.
Li
,
R.
Ramesh
,
R.
Uecker
, and
P.
Reiche
,
Appl. Phys. Lett.
73
,
2923
(
1998
).
8.
R. E.
Newnham
,
R. W.
Wolfe
, and
J. F.
Dorrian
,
Mater. Res. Bull.
6
,
1029
(
1971
).
9.
H. N.
Lee
,
S.
Senz
,
A.
Visinoiu
,
A.
Pignolet
,
D.
Hesse
, and
U.
Gösele
,
Appl. Phys. A: Mater. Sci. Process.
71
,
101
(
2000
).
10.
For SBT an orthorhombic unit cell was assumed (a=0.5531 nm,b=0.5534 nm, and c=2.4984 nm) as determined by
A. D.
Rae
,
J. G.
Thompson
, and
R. L.
Withers
,
Acta Crystallogr., Sect. B: Struct. Sci.
48
,
418
(
1992
).
11.
SRO is an orthorhombic perovskite with the lattice parameters a=0.5573 nm,b=0.5538 nm, and c=0.7856 nm. The structure can also be treated as a slightly distorted tetragonal structure with the lattice parameters at=0.3925 nm,ct=0.7856 nm, and the angle γ=89.6° between the [100]t and [010]t axes. The distorted pseudotetragonal structure can also further be treated as a pseudocubic structure.
12.
C.
Harnagea
,
A.
Pignolet
,
M.
Alexe
,
D.
Hesse
, and
U.
Gösele
,
Appl. Phys. A: Mater. Sci. Process.
70
,
261
(
2000
).
13.
S. Y.
Hou
,
J.
Kwo
,
R. K.
Watts
,
J.-Y.
Cheng
, and
D. K.
Fork
,
Appl. Phys. Lett.
67
,
1387
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.