In heteroepitaxy, misfit stress leads to a well-known instability of planar films against “roughening.” In contrast, we find that growth of a strained-layer superlattice is dynamically stable under a range of growth conditions. Outside the stable range, the modulations of successive layers may be in phase, out of phase, or more complex, as summarized in a dynamical phase diagram. This remarkable behavior results from the collective influence of the buried interfaces, via their strain fields, on the evolution of the surface morphology.

1.
J. H.
van der Merwe
,
J. Appl. Phys.
34
,
117
(
1963
);
J. H.
van der Merwe
,
J. Appl. Phys.
34
,
123
(
1963
).
2.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
29
,
273
(
1975
);
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
32
,
265
(
1976
).
3.
J.
Tersoff
and
F. K.
LeGoues
,
Phys. Rev. Lett.
72
,
3570
(
1994
).
4.
J.
Tersoff
,
Y. H.
Phang
,
Z. Y.
Zhang
, and
M. G.
Lagally
,
Phys. Rev. Lett.
75
,
2730
(
1995
).
5.
R. J.
Asaro
and
W. A.
Tiller
,
Metall. Trans. A
3
,
1789
(
1972
).
6.
M. A.
Grinfeld
,
Sov. Phys. Dokl.
31
,
831
(
1986
).
7.
D. J.
Srolovitz
,
Acta Metall.
37
,
621
(
1989
).
8.
In faceted systems, the system is metastable if the surface is a facet plane (see Ref. 3). However, for any other surface orientation the strained layer is unstable, even in the faceted case (see Ref. 4).
9.
K. Y.
Cheng
,
K. C.
Hsieh
, and
N. J.
Baillargeon
,
Appl. Phys. Lett.
60
,
2892
(
1992
).
10.
S. T.
Chou
,
K. Y.
Cheng
,
L. J.
Chou
, and
K. C.
Hsieh
,
J. Appl. Phys.
78
,
6270
(
1995
).
11.
J.
Yoshida
,
K.
Kishino
,
D. H.
Jang
,
S.
Nahm
,
I.
Nomura
, and
A.
Kikuchi
,
Opt. Quantum Electron.
28
,
547
(
1996
).
12.
J.
Mirecki-Millunchick
,
R. D.
Twesten
,
D. M.
Follstaedt
,
S. R.
Lee
,
E. D.
Jones
,
Y.
Zhang
,
S. P.
Ahrenkiel
, and
A.
Mascarenhas
,
Appl. Phys. Lett.
70
,
1402
(
1997
).
13.
G.
Springholz
,
V.
Holy
,
M.
Pinczolits
, and
G.
Bauer
,
Science
282
,
734
(
1998
);
J.
Tersoff
,
C.
Teichert
, and
M. G.
Lagally
,
Phys. Rev. Lett.
76
,
1675
(
1996
).
14.
W. W.
Mullins
,
J. Appl. Phys.
28
,
333
(
1957
).
15.
For an anisotropic surface energy, γ represents the surface energy plus its second derivative with respect to orientation.
16.
L. E. Shilkrot, D. J. Srolovitz, and J. Tersoff (unpublished).
This content is only available via PDF.
You do not currently have access to this content.