A series of ordered, periodic arrays of low barrier height n-Si/Ni nanometer-scale contacts interspersed among high barrier height n-Si/liquid contacts were prepared by evaporating Ni through bilayers of close-packed latex spheres deposited on n-Si. By varying the diameter of the spheres from 174 to 1530 nm, geometrically self-similar Si/Ni structures were produced having triangular Si/Ni features ranging from approximately 100 to 800 nm on a side. The resulting Si surfaces were used as electrodes in methanolic electrochemical cells containing LiClO4 and 1,1-dimethylferrocene+/o. The dark current density–voltage properties of the resulting mixed barrier height contacts were strongly dependent on the size of the low barrier height contact regions even though the fraction of the Si surface covered by Ni remained constant.

1.
R. T.
Tung
,
Appl. Phys. Lett.
58
,
2821
(
1991
).
2.
R. T.
Tung
,
Phys. Rev. B
45
,
13509
(
1992
).
3.
J. P.
Sullivan
,
R. T.
Tung
,
M. R.
Pinto
, and
W. R.
Graham
,
J. Appl. Phys.
70
,
7403
(
1991
).
4.
J. L.
Freeouf
,
T. N.
Jackson
,
S. E.
Laux
, and
J. M.
Woodall
,
J. Vac. Sci. Technol.
21
,
570
(
1982
).
5.
I.
Ohdomari
and
H.
Aochi
,
Phys. Rev. B
35
,
682
(
1987
).
6.
J.
Osvald
,
J. Appl. Phys.
85
,
1935
(
1999
).
7.
S.
Anand
,
S. B.
Carlsson
,
K.
Deppert
,
L.
Montelius
, and
L.
Samuelson
,
J. Vac. Sci. Technol. B
14
,
2794
(
1996
).
8.
A.
Olbrich
,
J.
Vancea
,
F.
Kreupl
, and
H.
Hoffmann
,
J. Appl. Phys.
83
,
358
(
1998
).
9.
M. V.
Schneider
,
A. Y.
Cho
,
E.
Kollberg
, and
H.
Zirath
,
Appl. Phys. Lett.
43
,
558
(
1983
).
10.
P.
Niedermann
,
L.
Quattropani
,
K.
Solt
,
A. D.
Kent
, and
O.
Fischer
,
J. Vac. Sci. Technol. B
10
,
580
(
1992
).
11.
I.
Ohdomari
,
T. S.
Kuan
, and
K. N.
Tu
,
J. Appl. Phys.
50
,
7020
(
1979
).
12.
H.
Palm
,
M.
Arbes
, and
M.
Schulz
,
Phys. Rev. Lett.
71
,
2224
(
1993
).
13.
A. A.
Talin
,
R. S.
Williams
,
B. A.
Morgan
,
K. M.
Ring
, and
K. L.
Kavanagh
,
J. Vac. Sci. Technol. B
12
,
2634
(
1994
).
14.
R. T.
Tung
,
J. P.
Sullivan
, and
F.
Schrey
,
Mater. Sci. Eng., B
14
,
266
(
1992
).
15.
A.
Kumar
and
N. S.
Lewis
,
J. Phys. Chem.
95
,
7021
(
1991
).
16.
Y.
Nakato
,
K.
Ueda
,
H.
Yano
, and
H.
Tsubomura
,
J. Phys. Chem.
92
,
2316
(
1988
), and references therein.
17.
S.
Yae
,
R.
Tsuda
,
T.
Kai
,
K.
Kikuchi
,
M.
Uetsuji
,
T.
Fuji
,
M.
Fujitani
, and
Y.
Nakato
,
J. Electrochem. Soc.
141
,
3090
(
1994
).
18.
A.
Meier
,
I.
Uhlendorf
, and
D.
Meissner
,
Electrochim. Acta
40
,
1523
(
1995
).
19.
P. E.
Laibinis
,
C. E.
Stanton
, and
N. S.
Lewis
,
J. Phys. Chem.
98
,
8765
(
1994
).
20.
H. W.
Deckman
and
J. H.
Dunsmuir
,
Appl. Phys. Lett.
41
,
377
(
1982
).
21.
J. C.
Hulteen
and
R. P.
Van Duyne
,
J. Vac. Sci. Technol. A
13
,
1553
(
1995
).
22.
A. S.
Dimitrov
and
K.
Nagayama
,
Langmuir
12
,
1303
(
1996
).
23.
A 45 mm long uncollimated source was positioned 120 or 250 mm directly above the substrates.
24.
Quoted metal coverages are approximate, having been extracted from atomic force microscopy images uncorrected for tip convolution effects. See
J. C.
Hulteen
,
D. A.
Treichel
,
M. T.
Smith
,
M. L.
Duval
,
T. R.
Jensen
, and
R. P.
Van Duyne
,
J. Phys. Chem. B
103
,
3854
(
1999
) for a discussion of such corrections. The edges of the metal particles were indistinct in our images, so our metal coverage measurements would remain approximate even if corrected for tip convolution. Idealized geometric considerations predict fractional surface coverages between 3% and 4% for double-layer nanosphere lithographic masks.
This content is only available via PDF.
You do not currently have access to this content.