High carbon concentrations at distinct regions at thermally-grown SiO2/6HSiC(0001) interfaces have been detected by electron energy loss spectroscopy (EELS). The thickness of these C-rich regions is estimated to be 10–15 Å. The oxides were grown on n-type 6H–SiC at 1100 °C in a wet O2 ambient for 4 h immediately after cleaning the substrates with the complete RCA process. In contrast, C-rich regions were not detected from EELS analyses of thermally grown SiO2/Si interfaces nor of chemical vapor deposition deposited SiO2/SiC interfaces. Silicon-rich layers within the SiC substrate adjacent to the thermally grown SiO2/SiC interface were also evident. The interface state density Dit in metal–oxide–SiC diodes (with thermally grown SiO2) was approximately 9×1011cm−2 eV−1 at E−Ev=2.0 eV, which compares well with reported values for SiC metal–oxide–semiconductor (MOS) diodes that have not received a postoxidation anneal. The C-rich regions and the change in SiC stoichiometry may be associated with the higher than desirable Dit’s and the low channel mobilities in SiC-based MOS field effect transistors.

1.
S. T.
Sheppard
,
M. R.
Melloch
, and
J. A.
Cooper
, Jr.
,
IEEE Trans. Electron Devices
41
,
1257
(
1994
).
2.
K.
Ueno
,
R.
Asai
, and
T.
Tsuji
,
IEEE Electron Device Lett.
19
,
244
(
1998
).
3.
V. V.
Afanas’ev
,
A.
Stesmans
,
M.
Bassler
,
G.
Pensl
,
M. J.
Schulz
, and
C. I.
Harris
,
J. Appl. Phys.
85
,
8292
(
1999
).
4.
J. A.
Cooper
, Jr.
,
Phys. Status Solidi A
162
,
305
(
1997
).
5.
L. A.
Lipkin
,
D. B.
Slater
, Jr.
, and
J. W.
Palmour
,
Mater. Sci. Forum
264–268
,
853
(
1998
).
6.
V. V.
Afanas’ev
,
M.
Bassler
,
G.
Pensl
, and
M.
Schulz
,
Phys. Status Solidi A
162
,
321
(
1997
).
7.
M.
Bassler
,
G.
Pensl
, and
V.
Afanas’ev
,
Diamond Relat. Mater.
6
,
1472
(
1997
).
8.
V. V.
Afanas’ev
,
A.
Stesmans
, and
C. I.
Harris
,
Mater. Sci. Forum
264–268
,
857
(
1998
).
9.
Q.
Wahab
,
L.
Hultman
,
M.
Willander
, and
J.-E.
Sundgren
,
J. Electron. Mater.
24
,
1345
(
1995
).
10.
B.
Hornetz
,
H.-J.
Michel
, and
J.
Halbritter
,
J. Mater. Res.
9
,
3088
(
1994
).
11.
P. J.
Macfarlane
and
M. E.
Zvanut
,
Mater. Res. Soc. Symp. Proc.
572
,
51
(
1999
).
12.
K.
Fukuda
,
S.
Suzuki
,
T.
Tanaka
, and
K.
Arai
,
Appl. Phys. Lett.
76
,
1585
(
2000
).
13.
R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum, New York, 1996).
14.
E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).
15.
Z.
Zheng
,
R. E.
Tressler
, and
K. E.
Spear
,
J. Electrochem. Soc.
137
,
854
(
1990
).
16.
M.
Di Ventra
and
S. T.
Pantelides
,
Phys. Rev. Lett.
83
,
1624
(
1999
).
17.
H.
Yano
,
F.
Katafuchi
,
T.
Kimoto
, and
H.
Matsunami
,
IEEE Trans. Electron Devices
46
,
504
(
1999
).
18.
J. N.
Shenoy
,
G. L.
Chindalore
,
M. R.
Melloch
, and
J. A.
Cooper
, Jr.
,
J. Electron. Mater.
24
,
303
(
1995
).
19.
G. G.
Jernigan
,
R. E.
Stahlbush
,
M. K.
Das
,
J. A.
Cooper
, Jr.
, and
L. A.
Lipkin
,
Appl. Phys. Lett.
74
,
1448
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.