A two-step, chlorination/alkylation procedure has been used to convert the surface Si–H bonds on NH4F(aq)-etched (111)-oriented Si wafers into Si–alkyl bonds of the form Si–CnH2n+1(n⩾1). The electrical properties of such functionalized surfaces were investigated under high-level and low-level injection conditions using a contactless rf apparatus. The charge carrier recombination velocities of the alkylated surfaces were <25 cm s−1 under high-level and low-level injection conditions, implying residual surface trap densities of <3×109cm−2. Although the carrier recombination velocity of hydrogen-terminated Si(111) surfaces in contact with aqueous acids is <20 cm s−1, this surface deteriorates within 30 min in an air ambient, yielding a high surface recombination velocity. In contrast, methylated Si(111) surfaces exhibit low surface recombination velocities in air for more than 4 weeks. Low surface recombination velocities were also observed for Si surfaces that had been modified with longer alkyl chains.

1.
E.
Yablonovitch
and
T. J.
Gmitter
,
Solid-State Electron.
35
,
261
(
1992
).
2.
W. D.
Eades
and
R. M.
Swanson
,
J. Appl. Phys.
58
,
4267
(
1985
).
3.
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
4.
S. J. Fonash, Solar Cell Device Physics (Academic, New York, 1981).
5.
E.
Yablonovitch
,
D. L.
Allara
,
C. C.
Chang
,
T.
Gmitter
, and
T. B.
Bright
,
Phys. Rev. Lett.
57
,
249
(
1986
).
6.
A.
Bansal
,
X.
Li
,
I.
Lauermann
,
N. S.
Lewis
,
S. I.
Yi
, and
W. H.
Weinberg
,
J. Am. Chem. Soc.
118
,
7225
(
1996
).
7.
M. R.
Linford
,
P.
Fenter
,
P. M.
Eisenerger
, and
C. E. D.
Chidsey
,
J. Am. Chem. Soc.
117
,
3145
(
1995
).
8.
M. R.
Linford
and
C. E. D.
Chidsey
,
J. Am. Chem. Soc.
115
,
12631
(
1993
).
9.
A. V.
Teplyakov
,
M. J.
Kong
, and
S. F.
Bent
,
J. Am. Chem. Soc.
119
,
11100
(
1997
).
10.
C. H.
de Villeneuve
,
J.
Pinson
,
M. C.
Bernard
, and
P.
Allongue
,
J. Phys. Chem. B
101
,
2415
(
1997
).
11.
J. M.
Buriak
and
M. J.
Allen
,
J. Am. Chem. Soc.
120
,
1339
(
1998
).
12.
J. M.
Buriak
,
M. P.
Stewart
,
T. W.
Geders
,
M. J.
Allen
,
H. C.
Choi
,
J.
Smith
,
D.
Raftery
, and
L. T.
Canham
,
J. Am. Chem. Soc.
121
,
11491
(
1999
).
13.
C.
Gurtner
,
A. W.
Wun
, and
M. J.
Sailor
,
Angew. Chem. Int. Ed. Engl.
38
,
1966
(
1999
).
14.
A.
Bansal
and
N. S.
Lewis
,
J. Phys. Chem. B
102
,
4058
(
1998
).
15.
A.
Bansal
and
N. S.
Lewis
,
J. Phys. Chem. B
102
,
1067
(
1998
).
16.
G. S.
Higashi
,
R. S.
Becker
,
Y. J.
Chabal
, and
A. J.
Becker
,
Appl. Phys. Lett.
58
,
1656
(
1991
).
17.
T.
Tiedje
,
J. I.
Haberman
,
R. W.
Francis
, and
A. K.
Ghosh
,
J. Appl. Phys.
54
,
2499
(
1983
).
18.
E.
Yablonovitch
,
R. M.
Swanson
,
W. D.
Eades
, and
B. R.
Weinberger
,
Appl. Phys. Lett.
48
,
245
(
1986
).
19.
E.
Yablonovitch
,
C. J.
Sandroff
,
R.
Bhat
, and
T.
Gmitter
,
Appl. Phys. Lett.
51
,
439
(
1987
).
20.
M. D. E.
Forbes
and
N. S.
Lewis
,
J. Am. Chem. Soc.
112
,
3682
(
1990
).
21.
M.
Kunst
and
A.
Sanders
,
Semicond. Sci. Technol.
7
,
51
(
1992
).
22.
A.
Fidélis
,
F.
Ozanam
, and
J. N.
Chazalviel
,
Surf. Sci.
444
,
L7
(
2000
).
23.
T. M.
Buck
and
F. S.
McKim
,
J. Electrochem. Soc.
343
,
709
(
1963
).
24.
A. Many, Y. Goldstein, and N. B. Grover, Semiconductor Surfaces (North Holland, Amsterdam, 1965).
This content is only available via PDF.
You do not currently have access to this content.