Differential postgrowth hydrogen passivation of deep levels in n–GaN grown by metal-organic chemical vapor deposition has been directly observed by means of both deep level transient spectroscopy and deep level optical spectroscopy. Two deep levels found at Ec−Et=0.62 and 1.35 eV show strong H passivation effects, with their concentrations decreasing by a factor of ⩾30 and ∼14, respectively. The decrease in the 0.62 eV trap concentration together with its correlation with the presence of Mg in n–GaN is consistent with Mg–H complex formation. A band of closely spaced deep levels observed at Ec−Et=2.64–2.80 eV narrows to Ec−Et=2.74–2.80 eV after hydrogenation, consistent with hydrogen complexing with VGa3− defects as anticipated by earlier theoretical results. Finally, a deep level at Ec−Et=3.22 eV likely related to background acceptors remains unaffected by hydrogen.

1.
S. J.
Pearton
,
C. R.
Abernathy
,
C. B.
Vartuli
,
J. W.
Lee
,
J. D.
MacKenzie
,
R. G.
Wilson
,
R. J.
Shul
,
F.
Ren
, and
J. M.
Zavada
,
J. Vac. Sci. Technol. A
14
,
831
(
1996
).
2.
S.
Nakamura
,
N.
Iwasa
,
M.
Senoh
, and
T.
Mukai
,
Jpn. J. Appl. Phys., Part 1
31
,
1258
(
1992
).
3.
W.
Götz
,
N. M.
Johnson
,
J.
Walker
,
D. P.
Bour
,
H.
Amano
, and
I.
Akasaki
,
Appl. Phys. Lett.
67
,
2666
(
1995
).
4.
W.
Götz
,
N. M.
Johnson
,
D. P.
Bour
,
M. D.
McCluskey
, and
E. E.
Haller
,
Appl. Phys. Lett.
69
,
3725
(
1996
).
5.
M. S.
Brandt
,
N. M.
Johnson
,
R. J.
Molnar
,
R.
Singh
, and
T. D.
Moustakas
,
Appl. Phys. Lett.
64
,
2264
(
1994
).
6.
S.
Nakamura
,
T.
Mukai
,
M.
Senoh
, and
N.
Iwasa
,
Jpn. J. Appl. Phys., Part 2
31
,
L138
(
1992
).
7.
S. J.
Pearton
,
R. G.
Wilson
,
J. M.
Zavada
,
J.
Han
, and
R. J.
Shul
,
Appl. Phys. Lett.
73
,
1877
(
1998
).
8.
B. P.
Keller
,
S.
Keller
,
D.
Kapolnek
,
W. N.
Jiang
,
Y. F.
Wu
,
H.
Masui
,
X.
Wu
,
B.
Heying
,
J. S.
Speck
,
U. K.
Mishra
, and
S. P.
DenBaars
,
J. Electron. Mater.
24
,
1707
(
1995
).
9.
A.
Hierro
,
D.
Kwon
,
S. A.
Ringel
,
M.
Hansen
,
J. S.
Speck
,
U. K.
Mishra
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
76
,
3064
(
2000
).
10.
B.
Chatterjee
,
S. A.
Ringel
,
R.
Sieg
,
R.
Hoffman
and
I.
Weinberg
,
Appl. Phys. Lett.
65
,
58
(
1994
).
11.
J.
Neugebauer
and
C. G.
Van de Walle
,
Phys. Rev. Lett.
75
,
4452
(
1995
).
12.
A.
Hierro
,
D.
Kwon
,
S. A.
Ringel
,
M.
Hansen
,
U. K.
Mishra
,
S. P.
DenBaars
, and
J. S.
Speck
,
MRS Internet J. Nitride Semicond. Res.
5S1
,
W11
.
80
(
2000
).
13.
P.
Hacke
,
H.
Nakayama
,
T.
Detchprohm
,
K.
Hiramatsu
, and
N.
Sawaki
,
Appl. Phys. Lett.
68
,
1362
(
1996
).
14.
U.
Kaufmann
,
M.
Kunzer
,
M.
Maier
,
H.
Obloh
,
A.
Ramakrishnan
,
B.
Santic
, and
P.
Schlotter
,
Appl. Phys. Lett.
72
,
1326
(
1998
).
15.
A.
Hierro
,
D.
Kwon
,
S. A.
Ringel
,
S.
Rubini
,
E.
Pelucchi
, and
A.
Franciosi
,
J. Appl. Phys.
87
,
730
(
2000
).
16.
E.
Calleja
,
F. J.
Sanchez
,
D.
Basak
,
M. A.
Sanchez-Garcia
,
E.
Muñoz
,
I.
Izpura
,
F.
Calle
,
J. M. G.
Tijero
,
J. L.
Sanchez-Rojas
,
B.
Beaumont
,
P.
Lorenzini
, and
P.
Gibart
,
Phys. Rev. B
55
,
4689
(
1997
).
17.
A. Y.
Polyakov
,
N. B.
Smirnov
,
A. S.
Usikov
,
A. V.
Govorkov
, and
B. V.
Pushniy
,
Solid-State Electron.
11
,
1959
(
1998
).
18.
C. G.
Van de Walle
,
Phys. Rev. B
56
,
R10
020
(
1997
).
19.
J.
Neugebauer
and
C. G.
Van de Walle
,
Appl. Phys. Lett.
69
,
503
(
1996
).
20.
K.
Saarinen
,
T.
Laine
,
S.
Kuisma
,
J.
Nissila
,
P.
Hautojarvi
,
L.
Dobrzynski
,
J. M.
Baranowski
,
K.
Pakula
,
R.
Stepniewski
,
M.
Wojdak
,
A.
Wysmolek
,
T.
Suski
,
M.
Leszczynski
,
I.
Grzegory
, and
S.
Porowski
,
Phys. Rev. Lett.
79
,
3030
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.