We have measured the 1/f noise through the metal–nonmetal transition in carbon black/polymer composites as a function of temperature and doping. At the electronic transition, the resistivity power spectrum Sρ varies as Sρ∼ρQ, with Q=2.77, in agreement with classical three-dimensional percolation. At lower temperatures, a crossover to tunneling-dominated transport occurs with Sρln Sρ2. Our results show that 1/f noise can be a more sensitive technique than resistivity itself for probing transport behavior near a percolation-induced electronic transition.

1.
M. B.
Heaney
,
Phys. Rev. B
52
,
12477
(
1995
).
2.
M. Sahimi, Applications of Percolation Theory (Taylor and Francis, London, 1994).
3.
E. J.
Severin
,
R. D.
Sanner
,
B. J.
Doleman
, and
N. S.
Lewis
,
Anal. Chem.
70
,
1440
(
1998
).
4.
G. A.
Garfunkel
and
M. B.
Weissman
,
Phys. Rev. Lett.
55
,
296
(
1985
).
5.
R. H.
Koch
,
R. B.
Laibowitz
,
E. I.
Alessandrini
, and
J. M.
Viggiano
,
Phys. Rev. B
32
,
6932
(
1985
).
6.
J. V.
Mantese
and
W.
Webb
,
Phys. Rev. Lett.
55
,
2212
(
1985
).
7.
C. C.
Chen
and
Y. C.
Chou
,
Phys. Rev. Lett.
54
,
2529
(
1985
).
8.
P.
Dutta
and
P. M.
Horn
,
Rev. Mod. Phys.
53
,
497
(
1981
). The constantslope with a strong temperature dependence for the magnitude shows that the noise mechanism is not consistent with the Dutta–Horn analysis.
9.
P. W.
Anderson
,
Phys. Rev.
109
,
1492
(
1958
).
10.
O.
Cohen
and
Z.
Ovadyahu
,
Phys. Rev. B
50
,
10442
(
1994
).
11.
A. A.
Snarskii
and
Kolek
,
Physica A
241
,
355
(
1997
).
12.
R.
Rammal
,
C.
Tannous
,
P.
Breton
, and
A.-M. S.
Tremblay
,
Phys. Rev. Lett.
54
,
1718
(
1985
).
13.
A.-M. S.
Tremblay
,
S.
Feng
, and
P.
Breton
,
Phys. Rev. B
33
,
2077
(
1986
).
14.
D. C.
Wright
,
D. J.
Bergman
, and
Y.
Kantor
,
Phys. Rev. B
33
,
396
(
1986
).
15.
An exponent of 6.2 has been predicted for a 2D Swiss cheese system (Ref. 4), but that is not consistent with our 3D morphology.
This content is only available via PDF.
You do not currently have access to this content.