Multiwall carbon nanotubes have been dispersed homogeneously throughout polystyrene matrices by a simple solution-evaporation method without destroying the integrity of the nanotubes. Tensile tests on composite films show that 1 wt % nanotube additions result in 36%–42% and ∼25% increases in elastic modulus and break stress, respectively, indicating significant load transfer across the nanotube-matrix interface. In situ transmission electron microscopy studies provided information regarding composite deformation mechanisms and interfacial bonding between the multiwall nanotubes and polymer matrix.

1.
M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996), p. 802.
2.
M. M. J.
Treacy
,
T. W.
Ebbesen
, and
J. M.
Gibson
,
Nature (London)
381
,
678
(
1996
).
3.
E. W.
Wong
,
P. E.
Sheehan
, and
C. M.
Lieber
,
Science
277
,
1971
(
1997
).
4.
P.
Poncharal
,
Z. L.
Wang
,
D.
Ugarte
, and
W. A.
de Heer
,
Science
283
,
1513
(
1999
).
5.
B. I.
Yakobson
and
R. E.
Smalley
,
Am. Sci.
85
,
324
(
1997
).
6.
J.
Sandler
,
M. S. P.
Shaffer
,
T.
Prasse
,
W.
Bauhofer
,
K.
Schulte
, and
A. H.
Windle
,
Polymer
40
,
5967
(
1999
).
7.
C. A. Grimes, C. Mungle, D. Kouzoudis, S. Fang, and P. C. Eklund, Chem. Phys. Lett. (in press).
8.
H.
Ago
,
K.
Petritsch
,
M. S. P.
Shaffer
,
A. H.
Windle
, and
R. H.
Friend
,
Adv. Mater.
11
,
1281
(
1999
).
9.
R.
Andrews
,
D.
Jacques
,
A. M.
Rao
,
F.
Derdyshire
,
D.
Qian
,
X.
Fan
,
E. C.
Dickey
, and
J.
Chen
,
Chem. Phys. Lett.
303
,
467
(
1999
).
10.
S. B.
Sinnott
,
R.
Andrews
,
D.
Qian
,
A. M.
Rao
,
Z.
Mao
,
E. C.
Dickey
, and
F.
Derdyshire
,
Chem. Phys. Lett.
315
,
25
(
1999
).
11.
P. M.
Ajayan
,
O.
Stephan
,
C.
Colliex
, and
D.
Trauth
,
Science
265
,
1212
(
1994
).
12.
L. S.
Schadler
,
S. C.
Giannaris
, and
P. M.
Ajayan
,
Appl. Phys. Lett.
73
,
3842
(
1998
).
13.
O.
Lourie
and
H. D.
Wagner
,
Appl. Phys. Lett.
73
,
3527
(
1998
).
14.
O.
Lourie
,
D. M.
Cox
, and
H. D.
Wagner
,
Phys. Rev. Lett.
81
,
1638
(
1998
).
15.
H. D.
Wagner
,
O.
Lourie
,
Y.
Feldman
, and
R.
Tenne
,
Appl. Phys. Lett.
72
,
188
(
1998
).
16.
L.
Jin
,
C.
Bower
, and
O.
Zhou
,
Appl. Phys. Lett.
73
,
1197
(
1998
).
17.
C.
Bower
,
R.
Rosen
,
L.
Jin
,
J.
Han
, and
O.
Zhou
,
Appl. Phys. Lett.
74
,
3317
(
1999
).
18.
R. Andrews, E. Dickey, D. Qian, B. Knutson, B. Safadi, B. Moore, and F. Derbyshire, Proceedings of Carbon’99, Charleston, SC, 1999, p. 258.
19.
K. L.
Lu
,
R. M.
Lago
,
Y. K.
Chen
,
M. L. H.
Green
,
P. F.
Harris
, and
S. C.
Tsang
,
Carbon
34
,
814
(
1996
).
20.
P. K. Mallick, Fiber-reinforced Composites (Marcel Dekker, New York, 1993), p. 130.
21.
M.
Yu
,
O.
Lourie
,
M. J.
Dyer
,
K.
Moloni
,
T. F.
Kelly
, and
R. S.
Ruoff
,
Science
287
,
637
(
2000
).
22.
Z. W.
Pan
,
S. S.
Xie
,
L.
Lu
,
B. H.
Chang
,
L. F.
Sun
,
W. Y.
Zhou
,
G.
Wang
, and
D. L.
Zhang
,
Appl. Phys. Lett.
74
,
3152
(
1999
).
23.
G. G.
Tibbetts
and
J. J.
Mchugh
,
J. Mater. Res.
14
,
2871
(
1999
).
24.
D. D. L. Chung, Carbon Fiber Composites (Butterworth-Heinemann, Boston, 1994), p. 67.
This content is only available via PDF.
You do not currently have access to this content.