We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time τe–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time τes decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, τe–ph and τes, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of τe–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/−3) GHz if one eliminates the bolometric phonon-heating effect.

1.
K. K.
Likharev
and
V. K.
Semenov
,
IEEE Trans. Appl. Supercond.
1
,
3
(
1991
).
2.
K. S.
II’in
,
I. I.
Milostnaya
,
A. A.
Verevkin
,
G. N.
Gol’tsman
,
E. M.
Gershenzon
, and
R.
Sobolewski
,
Appl. Phys. Lett.
73
,
3938
(
1998
).
3.
A. D.
Semenov
,
R. S.
Nebosis
,
Yu. P.
Gousev
,
M. A.
Heusinger
, and
K. F.
Renk
,
Phys. Rev. B
52
,
581
(
1995
).
4.
M.
Lindgren
,
M.
Currie
,
C.
Williams
,
T. Y.
Hsiang
,
P. M.
Fauchet
,
R.
Sobolewski
,
S. H.
Moffat
,
R. A.
Hughes
,
J. S.
Preston
, and
F. A.
Hegmann
,
Appl. Phys. Lett.
74
,
853
(
1999
).
5.
M.
Lindgren
,
M.
Currie
,
C.
Williams
,
T. Y.
Hsiang
,
P. M.
Fauchet
,
R.
Sobolewski
,
S. H.
Moffat
,
R. A.
Hughes
,
J. S.
Preston
, and
F. A.
Hegmann
,
IEEE J. Sel. Top. Quantum Electron.
2
,
668
(
1996
).
6.
P. Yagoubov, G. Gol’tsman, B. Voronov, L. Seidman, V. Siomash, S. Cherednichenko, and E. Gershenzon, in the Proceedings of the Seventh International Symposium on Space Terahertz Technology, Charlottesville, VA, 1996, p. 290.
7.
S. L.
Anisimov
,
B. L.
Kapeliovich
, and
T. L.
Perel’man
,
Zh. Eksp. Teor. Fiz.
66
,
776
(
1974
);
S. L.
Anisimov
,
B. L.
Kapeliovich
, and
T. L.
Perel’man
,
Sov. Phys. JETP
39
,
375
(
1974
).
8.
A.
Rothwarf
and
B. N.
Taylor
,
Phys. Rev. Lett.
19
,
27
(
1967
).
9.
R.
Sobolewski
,
Superconducting and Related Oxides: Physics and Nanoengineering III
, edited by
D.
Pavuna
and
,
I.
Bozovic
[
Proc. SPIE
3481
,
480
(
1998
)].
This content is only available via PDF.
You do not currently have access to this content.