We investigated ZnCdSe/ZnSe quantum-dot structures which include planar and coherently strained three-dimensional islands with different sizes. Optical excitation of these islands well below the ZnSe band gap leads to a resonant enhancement of the Zn0.7Cd0.3Se longitudinal-optical (LO) phonon-scattering efficiency and makes the 2LO and 3LO multiphonon emission observable. Resonant excitation with a power density of about 1.3 MW/cm2 using a micro-Raman setup results in an exponential decrease of the 1LO, 2LO, and 3LO intensity with irradiation time. This decay behavior is not observed for pure ZnSe crystals and can be avoided for the ZnCdSe/ZnSe structures using much lower excitation densities. The decrease in intensity is accompanied by a shift of the LO mode to higher frequencies resulting from a lower cadmium concentration in the alloy. From these experimental findings, we conclude that resonant excitation at a certain power density leads to cadmium out-diffusion from the planar quantum dots, which shifts the resonance away from the excitation energy.

1.
For a review, see D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999).
2.
S. V.
Ivanov
,
A. A.
Toropov
,
S. V.
Sorokin
,
T. V.
Shubina
,
I. V.
Sedova
,
P. S.
Kop’ev
,
Z. I.
Alferov
,
A.
Waag
,
H. J.
Lugauer
,
G.
Reuscher
,
M.
Keim
,
F. F.
Fischer
, and
G.
Landwehr
,
Semiconductors
33
,
1016
(
1999
).
3.
I.
Daruka
,
J.
Tersoff
, and
A.-L.
Barabasi
,
Phys. Rev. Lett.
82
,
2753
(
1999
).
4.
T.
Kümmell
,
R.
Weigand
,
G.
Bacher
,
A.
Forchel
,
K.
Leonardi
,
D.
Hommel
, and
H.
Selke
,
Appl. Phys. Lett.
73
,
3105
(
1998
).
5.
M.
Strassburg
,
V.
Kutzer
,
U. W.
Pohl
,
A.
Hoffmann
,
I.
Broser
,
N. N.
Ledentsov
,
D.
Bimberg
,
A.
Rosenauer
,
U.
Fischer
,
D.
Gerthsen
,
I. L.
Krestnikov
,
M. V.
Maximov
,
P. S.
Kop’ev
, and
Z. I.
Alferov
,
Appl. Phys. Lett.
72
,
942
(
1998
).
6.
G.
Lermann
,
T.
Bischof
,
A.
Materney
,
W.
Kiefer
,
T.
Kümmell
,
G.
Bacher
,
A.
Forchel
, and
G.
Landwehr
,
J. Appl. Phys.
81
,
1446
(
1997
).
7.
D.
Schikora
,
S.
Schwedhelm
,
D. J.
As
,
K.
Lischka
,
D.
Litvinov
,
A.
Rosenauer
,
D.
Gerthsen
,
M.
Strassburg
,
A.
Hoffmann
, and
D.
Bimberg
,
Appl. Phys. Lett.
76
,
418
(
2000
).
8.
M.
Strassburg
,
T.
Deniozou
,
A.
Hoffmann
,
R.
Heitz
,
U. W.
Pohl
,
D.
Bimberg
,
D.
Litvinov
,
A.
Rosenauer
,
D.
Gerthsen
,
S.
Schwedhelm
,
K.
Lischka
, and
D.
Schikora
,
Appl. Phys. Lett.
76
,
685
(
2000
);
M. Straßburg, T. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, M. Bartels, I. Kudryashov, K. Lischka, and D. Schikora, J. Cryst. Growth (to be published).
9.
R. G.
Alonso
,
E.-K.
Suh
,
A. K.
Ramdas
,
N.
Samarth
,
H.
Luo
, and
J. K.
Furdyna
,
Phys. Rev. B
40
,
3720
(
1989
).
10.
D. J.
Olego
,
K.
Shahzad
,
D. A.
Cammack
, and
H.
Cornelissen
,
Phys. Rev. B
38
,
5554
(
1988
).
11.
R. C. C.
Leite
and
S. P. S.
Porto
,
Phys. Rev. Lett.
17
,
10
(
1966
).
12.
R. M.
Martin
and
T. C.
Damen
,
Phys. Rev. Lett.
26
,
86
(
1971
).
13.
K. P.
O’Donnell
and
X.
Chen
,
Appl. Phys. Lett.
58
,
2924
(
1991
).
14.
I. I.
Reshina
,
A. A.
Toropov
,
S. V.
Ivanov
,
D. N.
Mirlin
,
M.
Keim
,
A.
Waag
, and
G.
Landwehr
,
Solid State Commun.
112
,
351
(
1999
).
15.
M.
Straßburg
,
M.
Kuttler
,
U. W.
Pohl
, and
D.
Bimberg
,
Thin Solid Films
336
,
208
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.