It is suggested that breakdown of a space-charge sheath obeys similar breakdown laws as known for vacuum breakdown. When metal plasmas of vacuum arcs are used, the sheath between a biased substrate and plasma is very thin and the electric-field strength is very high. Field enhancement (e.g., at sharp edges of the substrate) leads to thermal instability of electron emission centers, followed by dense plasma formation which, in turn, electrically short circuits the sheath (breakdown). Theoretical and experimental evidence for this mechanism is presented.

1.
J. R.
Conrad
,
J. L.
Radtke
,
R. A.
Dodd
,
F. J.
Worzala
, and
N. C.
Tran
,
J. Appl. Phys.
62
,
4591
(
1987
).
2.
I. G.
Brown
,
O. R.
Monteiro
, and
M. M. M.
Bilek
,
Appl. Phys. Lett.
74
,
2426
(
1999
).
3.
I. G.
Brown
,
X.
Godechot
, and
K. M.
Yu
,
Appl. Phys. Lett.
58
,
1392
(
1991
).
4.
A.
Anders
,
Surf. Coat. Technol.
93
,
157
(
1997
).
5.
J. M. Lafferty, Vacuum Arcs—Theory and Applications (Wiley, New York, 1980).
6.
G. A. Mesyats and D. I. Proskurovsky, Pulsed Electrical Discharge in Vacuum (Springer, Berlin, 1989).
7.
R. L. Boxman, D. M. Sanders, and P. J. Martin, Handbook of Vacuum Arc Science and Technology (Noyes, Park Ridge, NJ, 1995).
8.
E.
Hantzsche
,
J. Phys. D
24
,
1339
(
1991
).
9.
C.
Wieckert
,
Contrib. Plasma Phys.
27
,
309
(
1987
).
10.
G. A. Mesyats, Explosive Electron Emission (URO, Ekaterinburg, 1998).
11.
C. D.
Child
,
Phys. Rev.
32
,
492
(
1911
).
12.
L.
Tonks
and
I.
Langmuir
,
Phys. Rev.
34
,
876
(
1929
).
13.
D. Bohm, in The Characteristics of Electrical Discharges in Magnetic Fields, edited by A. Guthrie and R. K. Wakerling (McGraw-Hill, New York, 1949), pp. 77–86.
14.
A. T. Forrester, Large Ion Beams (Wiley, New York, 1988).
15.
R. A.
MacGill
,
M. R.
Dickinson
,
A.
Anders
,
O. R.
Monteiro
, and
I. G.
Brown
,
Rev. Sci. Instrum.
69
,
801
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.