Amorphization of a n-type Czochralski wafer was achieved using a series of Si+ implants of 30 and 120 keV, each at a dose of 1×1015cm2. The Si+ implants produced a 2400 Å deep amorphous layer, which was then implanted with 4 keV 1×1014/cm2 B+. Postimplantation anneals were performed in a tube furnace at 750 °C, for times ranging from 15 min to 6 h. Secondary ion mass spectrometry was used to monitor the dopant diffusion after annealing. Transmission electron microscopy (TEM) was used to study the EOR defect evolution. Upon annealing, the boron peak showed no clustering, and TED was observed in the entire boron profile. TEM results show that both {311} defects and dislocation loops were present in the EOR damage region. The majority of the {311} defects dissolved in the interval between 15 min and 2 h. Results indicate that {311} defects release interstitials during the time that boron exhibits TED. These results show that there is a strong correlation between {311} dissolution in the EOR and TED in the regrown silicon layer. Quantitative TEM of dislocation loop growth and {311} dissolution indicates that in addition to {311} defects, submicroscopic sources of interstitials may also exist in the EOR which may contribute to TED.

1.
M.
Servidori
,
Nucl. Instrum. Methods Phys. Res. B
19/20
,
443
(
1987
).
2.
K. S.
Jones
,
S.
Prussin
, and
E. R.
Weber
,
Appl. Phys. A: Mater. Sci. Process.
45
,
1
(
1988
).
3.
P. M.
Fahey
,
P. B.
Griffin
, and
J. D.
Plummer
,
Rev. Mod. Phys.
61
,
289
(
1989
).
4.
R.
Angelucci
,
P.
Negrini
, and
S.
Solmi
,
Appl. Phys. Lett.
49
,
1468
(
1986
).
5.
L. S.
Robertson
,
K. S.
Jones
,
A.
Lilak
,
M. E.
Law
,
P. S.
Kringhoj
,
L. M.
Rubin
,
J.
Jackson
,
D. S.
Simons
, and
P.
Chi
,
Appl. Phys. Lett.
71
,
3105
(
1997
).
6.
K. S.
Jones
,
M. K. J.
Chen
,
M.
Puga-Lambers
,
B.
Freer
,
J.
Berstein
, and
L.
Rubin
,
J. Appl. Phys.
81
,
6051
(
1997
).
7.
D. J.
Eaglesham
,
P. A.
Stolk
,
H.-J.
Gossmann
, and
J. M.
Poate
,
Appl. Phys. Lett.
65
,
2305
(
1994
).
8.
K. S.
Jones
,
L. H.
Zhang
,
V.
Krishnamoorthy
,
M.
Law
,
D. S.
Simons
,
P. H.
Chi
,
L.
Rubin
, and
R. G.
Elliman
,
Appl. Phys. Lett.
68
,
2672
(
1996
).
9.
Certain commercial equipment, instruments, or materials are identified in this letter to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the material or equipment identified are necessarily the best available for the purpose.
10.
P. A.
Stolk
,
H.-J.
Gossmann
,
D. J.
Eaglesham
,
D. C.
Jacobson
,
J. M.
Poate
, and
H. S.
Luftman
,
Appl. Phys. Lett.
66
,
568
(
1995
).
11.
K. S.
Jones
,
R. G.
Elliman
,
M.
Petravic
, and
P.
Kringhøj
,
Appl. Phys. Lett.
68
,
3111
(
1996
).
12.
R. B. Fair, in Impurity Doping Processes in Silicon, edited by F. F. Y. Wang (North Holland, Amsterdam, 1981), p. 315.
13.
J.-H.
Li
and
K. S.
Jones
,
Appl. Phys. Lett.
73
,
3748
(
1998
).
14.
L. S. Robertson and K. S. Jones (unpublished).
This content is only available via PDF.
You do not currently have access to this content.