Superconducting quantum interference devices (SQUIDs) have been fabricated using YBa2Cu3O7−x [100] 45°-tilt grain-boundary Josephson junctions based on a controllable biepitaxial technique. These devices are characterized by large characteristic voltages, desirable magnetic-flux-to-voltage transfer parameters and low flux noise. An energy resolution of 1.6×10−30J/Hz at liquid helium has been measured, which is the lowest value reported for biepitaxial SQUIDs. These junctions exhibit a phenomenology different from traditional [001] 45°-tilt biepitaxials probably due to the absence of π junctions. The performance of the presented SQUIDs demonstrates that significant improvements in the biepitaxial technique are possible, and the resulting devices have potential for applications.

1.
D.
Dimos
,
P.
Chaudari
,
J.
Mannhart
, and
F. K.
LeGoues
,
Phys. Rev. Lett.
61
,
219
(
1988
).
2.
K.
Char
,
M. S.
Colclough
,
S. M.
Garrison
,
N.
Newman
, and
G.
Zaharchuk
,
Appl. Phys. Lett.
59
,
773
(
1991
).
3.
R. W. Simon, J. F. Burch, K. P. Daly, W. D. Dozier, R. Hu, A. E. Lee, J. A. Luine, H. M. Manasevit, C. E. Platt, S. M. Schwarzbek, D. St. John, M. S. Wire, and M. J. Zani, in Science and Technology of Thin Films Superconductors 2, edited by R. D. McConnel and R. Noufi (Plenum, New York, 1990), p. 549.
4.
R.
Gross
,
P.
Chaudari
,
M.
Kawasaki
,
M. B.
Ketchen
, and
A.
Gupta
,
Appl. Phys. Lett.
57
,
727
(
1990
).
5.
L. P.
Lee
,
J.
Longo
,
V.
Vinetskiy
, and
R.
Cantor
,
Appl. Phys. Lett.
66
,
1539
(
1995
).
6.
F.
Ludwig
,
E.
Dantsker
,
R.
Kleiner
,
D.
Koelle
,
J.
Clarke
,
S.
Knappe
,
D.
Drung
,
H.
Koch
,
N.
Alford
, and
T.
Button
,
Appl. Phys. Lett.
66
,
1418
(
1995
).
7.
D.
Dimos
,
P.
Chaudhari
, and
J.
Mannhart
,
Phys. Rev. B
41
,
4038
(
1990
).
8.
J.
Mannhart
,
H.
Hilgenkamp
,
B.
Mayer
,
Ch.
Gerber
,
J. R.
Kirtley
,
K. A.
Moler
, and
M.
Sigrist
,
Phys. Rev. Lett.
77
,
2782
(
1996
);
J. R.
Kirtley
,
C. C.
Tsue
,
J. Z.
Sun
,
C. C.
Chi
,
L. S.
Yu-Jahnes
,
A.
Gupta
,
M.
Rupp
, and
M. B.
Ketchen
,
Nature (London)
373
,
225
(
1995
).
9.
F.
Tafuri
,
F.
Miletto Granozio
,
F.
Carillo
,
A.
Di Chiara
,
K.
Verbist
, and
G.
Van Tendeloo
,
Phys. Rev. B
59
,
11523
(
1999
).
10.
A. H.
Miklich
,
J. J.
Kingston
,
F. C.
Wellstood
,
J.
Clarke
,
M. S.
Colclough
,
K.
Char
, and
G.
Zaharchuk
,
Appl. Phys. Lett.
59
,
988
(
1991
).
11.
J. M.
Jaycox
and
M. B.
Ketchen
,
IEEE Trans. Magn.
MAG-17
,
400
(
1981
).
12.
R.
Meservey
and
P. M.
Tedrow
,
J. Appl. Phys.
40
,
2028
(
1969
).
13.
K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines (Artech House, Dedham, MA, 1979), pp. 263–265.
14.
F.
Tafuri
,
B.
Nadgorny
,
S.
Shokhor
,
M.
Gurvitch
,
F.
Lombardi
,
F.
Carillo
,
A.
Di Chiara
, and
E.
Sarnelli
,
Phys. Rev. B
57
,
R14076
(
1998
).
15.
J.
Mannhart
,
R.
Gross
,
K.
Hipler
,
R. P.
Huebner
,
C. C.
Tsuei
,
D.
Dimos
, and
P.
Chaudari
,
Science
45
,
839
(
1989
).
16.
D.
Berman
,
H. S. J.
van der Zant
,
T. P.
Orlando
, and
K. A.
Delin
,
IEEE Trans. Appl. Supercond.
4
,
161
(
1994
).
17.
K.
Enpuku
,
Y.
Shimomura
, and
T.
Kisu
,
J. Appl. Phys.
73
,
7929
(
1993
).
18.
E.
Sarnelli
,
C.
Camerlingo
,
M.
Russo
,
G.
Torrioli
, and
M. G.
Castellano
,
J. Appl. Phys.
82
,
3922
(
1997
), and references therein.
19.
K.
Enpuku
,
G.
Tokita
,
T.
Maruo
, and
T.
Minotani
,
J. Appl. Phys.
78
,
3498
(
1995
).
20.
A. H.
Miklich
,
J.
Clarke
,
M. S.
Colclough
, and
K.
Char
,
Appl. Phys. Lett.
60
,
1989
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.