We investigated the dynamics of the chiral-homeotropic liquid-crystal cell and found that the flow of liquid crystal causes an optical bounce after switching on a high applied voltage. We analyzed the behavior of the directors by computer simulation and found that the field-induced backflow effect results in the abnormal twist of the directors near the substrates. The abnormal twist slows down the rising speed of the chiral-homeotropic cell and produces an optical bounce during the rising period. Our results indicate that the backflow effect should be considered on the design of fast chiral-homeotropic liquid-crystal cells. The significant distinctions between this field-induced optical bounce and the well-known optical bounce of the twisted nematic liquid-crystal cell are also described in this letter.

1.
M. F.
Schiekel
and
K.
Fahrenschon
,
Appl. Phys. Lett.
19
,
391
(
1971
).
2.
K.
Ohmuro
,
S.
Kataoka
,
T.
Sasaki
, and
Y.
Koike
,
Soc. Inform. Display Tech. Digest
,
845
(
1997
).
3.
D.
de Rossi
and
J.
Robert
,
J. Appl. Phys.
49
,
1139
(
1978
).
4.
S. W.
Shu
,
S. T.
Shin
, and
S. D.
Lee
,
Appl. Phys. Lett.
68
,
2819
(
1996
).
5.
S. T.
Wu
,
C. S.
Wu
, and
K. W.
Lin
,
J. Appl. Phys.
82
,
4795
(
1997
).
6.
T.
Takahashi
,
S.
Saito
, and
T.
Akahane
,
Jpn. J. Appl. Phys., Part 1
36
,
3531
(
1997
).
7.
C. Z.
van Doorn
,
J. Appl. Phys.
46
,
3738
(
1975
).
8.
D. W.
Berreman
,
J. Appl. Phys.
46
,
3746
(
1975
).
9.
T. Z.
Qian
,
Z. L.
Xie
,
H. S.
Kwok
, and
P.
Sheng
,
Appl. Phys. Lett.
71
,
596
(
1997
).
10.
R. C.
Jones
,
J. Opt. Soc. Am.
32
,
486
(
1942
).
11.
H.
Kneppe
,
F.
Schneider
, and
N. K.
Sharama
,
J. Chem. Phys.
77
,
3203
(
1982
).
12.
See, for example, P. G. de Genne and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993).
This content is only available via PDF.
You do not currently have access to this content.