Mössbauer spectroscopy with Fe57 is used to characterize pulsed-laser-deposited (PLD) Ni0.6ZnyFe2O4 films is demonstrated. Mössbauer spectra were recorded as a function of film thickness (3–16 μm) for films deposited in background O2 pressures of 50 and 200 mTorr, and for a zinc concentration of y=0.72. A spectrum was also recorded for y=0.4 deposited in a background pressure of 200 mTorr. The site occupancy was determined for the tetrahedral (A) and octahedral (B) sites. Results obtained here show that the effect of increasing the Zn is to shift Fe(tet) to Fe(oct). When compared with previous Mössbauer measurements on the bulk NiZn ferrites, the ferrite films give spectra of similar quality with no visible evidence of clustering or multiple phases present. The same linewidth was found for a PLD processed Fe film and a Mössbauer standard 70-μm-thick α-Fe enriched foil. The Fe film had a magnetic hyperfine field of 334 kOe and no evidence of the presence of any iron oxides. Good spectra may be obtained by selecting substrates with low mass and low atomic number. We were successful in obtaining measurable Mössbauer spectra for films deposited on 0.5-mm-thick MgO, sapphire, and alumina substrates whereas films deposited on Si, GaAs, and cubic zirconia substrates did not give good spectra.

1.
Pulsed Laser Deposition of Thin Films, edited by D. B. Chrisey and G. K. Hubler (Wiley, New York, 1994).
2.
H. S.
Newman
,
D. B.
Chrisey
,
J. S.
Horwitz
,
B. D.
Weaver
, and
M. E.
Reeves
,
IEEE Trans. Magn.
27
,
2540
(
1991
).
3.
C. M.
Cotell
,
D. B.
Chrisey
,
K. S.
Grabowski
,
J. S.
Sprague
, and
C. R.
Gossett
,
J. Biomaterials
3
,
87
(
1992
).
4.
C. A.
Carosella
,
D. B.
Chrisey
,
P.
Lubitz
,
J. S.
Horwitz
,
P.
Dorsey
,
R.
Seed
, and
C.
Vitoria
,
J. Appl. Phys.
71
,
5107
(
1992
).
5.
C. M.
Williams
,
D. B.
Chrisey
,
P.
Lubitz
,
K. S.
Grabowski
, and
C. M.
Cotell
,
J. Appl. Phys.
75
,
1676
(
1994
).
6.
P. C.
Dorsey
,
B. J.
Rappoli
,
K. S.
Grabowski
,
P.
Lubitz
,
D. B.
Chrisey
, and
J. S.
Horwitz
,
J. Appl. Phys.
81
,
6884
(
1997
).
7.
J. R.
Gancedo
,
M.
Gracia
, and
J. F.
Marco
,
Hyperfine Interact.
66
,
83
(
1991
).
8.
V. I.
Gol’danskii
,
V. F.
Belov
,
M. N.
Devisheva
, and
V. A.
Trukhtanov
,
JETP
22
,
1149
(
1966
).
9.
J. M.
Daniels
and
A.
Rosencwaig
,
Can. J. Phys.
48
,
381
(
1970
).
10.
M.
Arshed
,
N. M.
Butt
,
M.
Siddique
,
M.
Anwar-ul-Islam
,
T.
Abbas
, and
M.
Ahmed
,
Solid State Commun.
84
,
717
(
1992
).
11.
M.
Arshed
,
M.
Siddique
,
M.
Anwar-ul-Islam
,
N. M.
Butt
,
T.
Abbas
, and
M.
Ahmed
,
Solid State Commun.
93
,
599
(
1995
).
12.
T. A.
Dooling
and
D. C.
Cook
,
J. Appl. Phys.
69
,
5352
(
1991
).
13.
V. G.
Harris
,
N. C.
Koon
,
C. M.
Williams
,
Q.
Zhang
,
M.
Abe
,
J. P.
Kirkland
, and
D. A.
McKeown
,
IEEE Trans. Magn.
31
,
3473
(
1995
).
14.
P. C.
Dorsey
,
P.
Lubitz
,
V.
Harris
,
D. B.
Chrisey
, and
J. S.
Horwitz
,
IEEE Trans. Magn.
31
,
3455
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.