Ferroelectric (PbxLa1−x)(ZryTi1−y)O3 (PLZT) thin films on Pt(Si) substrates have been synthesized using a two-step process, which includes low temperature pulsed laser deposition (PLD) and high temperature rapid thermal annealing (RTA). Pure perovskite PLZT phase can be achieved by RTA at 550 °C (1–60 s), provided that the crystalline SrRuO3 layer is used as buffer layer on top of Pt(Si) substrates. Interdiffusion between layers is efficiently suppressed. Increasing the RTA duration insignificantly modifies the crystalline structure and the microstructure of the PLZT/SRO/Pt(Si) films, but significantly improves the ferroelectric properties and leakage characteristics of the films. The electrical properties, which are optimized for the films RTA at 550 °C (30 s), are Pr=19 μC/cm2,Ec=70 kV/cm, and JL<10−5A/cm2 for Ea<450 kV/cm applied field. A self-aligned pattern consisting of crystalline PLZT dots with good ferroelectric properties (Pr=14 μC/cm2,Ec=80 kV/cm) has been demonstrated.

1.
J. F.
Scott
and
C. A. P.
de Araujo
,
Science
246
,
1400
(
1989
).
2.
C. A. P.
de Araujo
,
L. D.
McMillan
,
B. M.
Melnick
,
J. D.
Cuchiaro
, and
J. F.
Scott
,
Ferroelectrics
104
,
241
(
1990
).
3.
R.
Moazzami
,
C.
Hu
, and
W. H.
Shepherd
,
IEEE Trans. Electron Devices
39
,
2044
(
1992
).
4.
G. H.
Haertling
,
J. Vac. Sci. Technol. A
9
,
414
(
1991
).
5.
R.
Ramesh
,
W. K.
Chan
,
B.
Wilkens
,
H.
Gilchrist
,
T.
Sands
,
J. M.
Tarascon
,
V. G.
Keramidas
,
D. K.
Fork
,
J.
Lee
, and
A.
Safari
,
Appl. Phys. Lett.
61
,
1537
(
1992
).
6.
R.
Ramesh
,
T.
Sands
,
V. G.
Keramidas
, and
D. K.
Fork
,
Mater. Sci. Eng., B
22
,
283
(
1994
).
7.
M.
Hiratami
,
C.
Okazaki
,
K.
Imagawa
, and
K.
Takagi
,
Jpn. J. Appl. Phys., Part 1
35
,
6212
(
1996
).
8.
X. P.
Wu
,
S. R.
Foltyn
,
R. C.
Dye
,
Y.
Coulter
, and
R. E.
Muenchausen
,
Appl. Phys. Lett.
62
,
2434
(
1993
).
9.
K.
Watanabe
,
M.
Ami
, and
M.
Tanaka
,
Mater. Res. Bull.
32
,
83
(
1997
).
10.
C. C.
Yang
,
M. S.
Chen
,
T. J.
Hong
,
C. M.
Wu
,
J. M.
Wu
, and
T. B.
Wu
,
Appl. Phys. Lett.
66
,
2643
(
1995
).
11.
O. X.
Jia
,
X. D.
Wu
,
S. R.
Foltyn
, and
P.
Tiwari
,
Appl. Phys. Lett.
66
,
2197
(
1995
).
12.
T. F.
Tseng
,
R. P.
Yang
,
K. S.
Liu
, and
I. N.
Lin
,
Appl. Phys. Lett.
70
,
46
(
1997
).
13.
K. S.
Liu
,
T. F.
Tseng
, and
I. N.
Lin
,
Appl. Phys. Lett.
72
,
1182
(
1998
).
14.
T.
Hatanaka
and
H.
Hasegawa
,
Jpn. J. Appl. Phys., Part 1
31
,
3245
(
1992
).
15.
W.
Pan
,
C. L.
Thio
, and
S. B.
Desu
,
J. Mater. Res.
13
,
362
(
1998
).
16.
C. W.
Chung
and
C. J.
Kim
,
Jpn. J. Appl. Phys., Part 1
36
,
2747
(
1997
).
17.
S.
Yokoyama
,
Y.
Ito
,
K.
Ishihara
,
K.
Hamada
,
S.
Ohnishi
,
J.
Kudo
, and
K.
Sakiyama
,
Jpn. J. Appl. Phys., Part 1
34
,
767
(
1995
).
18.
H.
Mace
,
H.
Achard
, and
L.
Peccoud
,
Microelectron. Eng.
29
,
45
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.