We report on a silicon-based resonant cavity photodiode with a buried silicon dioxide layer as the bottom reflector. The buried oxide is created by using a separation by implantation of oxygen technique. The device shows large Fabry–Pérot oscillations. Resonant peaks and antiresonant troughs are observed as a function of the wavelength, with a peak responsivity of about 50 mA/W at 650 and 709 nm. The leakage current density is 85 pA/mm2 at −5 V, and the average zero-bias capacitance is 12 pF/mm2. We also demonstrate that the buried oxide prevents carriers generated deep within the substrate from reaching the top contacts, thus removing any slow carrier diffusion tail from the impulse response.
REFERENCES
1.
P. J. Timans, in Advances in Rapid Thermal and Integrated Processing, edited by F. Roozeboom (Kluwer Academic, London, 1995).
2.
M.
Seto
, M.
Mabesoone
, S.
de Jager
, A.
Vermeulen
, W.
de Boer
, M.
Theunissen
, and H.
Tuinhout
, Solid-State Electron.
41
, 1083
(1997
).3.
4.
S. S.
Murtaza
, H.
Nie
, J. C.
Campbell
, J. C.
Bean
, and L. J.
Peticolas
, IEEE Photonics Technol. Lett.
8
, 927
(1996
).5.
M.
Seto
, W. B.
de Boer
, V. S.
Sinnis
, A. P.
Morrison
, W.
Hoekstra
, and S.
de Jager
, Appl. Phys. Lett.
72
, 1550
(1998
).6.
R. T.
Carline
, D. J.
Robbins
, M. B.
Stanaway
, and W. Y.
Leong
, Appl. Phys. Lett.
68
, 544
(1996
).7.
M. Seto, V. S. Sinnis, A. P. Morrison, W. Hoekstra, and W. B. de Boer, 28th ESSDERC (Editions Frontieres, Paris, 1998), pp. 196–199.
8.
Ibis Technology Corporation, 32A Cherry Hill Drive, Danvers, MA 01923.
9.
10.
MEDICI 2.2.1, Technology Modelling Associates, 595 N. Lawrence Expressway, Sunnyvale, CA 94086-3922.
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.