We report electroabsorption studies of poly(2-methoxy-5-ethyl(2-hexyloxy) para-phenylene vinylene) light-emitting diodes. An electric field develops during operation which opposes the field of the applied bias. The counter field builds up within 5 s of turning on the device, increases in magnitude with the operating voltage, and decays exponentially with a time constant between 15 and 32 s. We attribute the counter field to bulk carrier traps and discuss its relevance to the increase of the turn-on voltage as organic light-emitting diodes degrade.

1.
J. H.
Burroughes
,
D. D. C.
Bradley
,
A. R.
Brown
,
R. N.
Marks
,
K.
Mackay
,
R. H.
Friend
,
P. L.
Burns
, and
A. B.
Holmes
,
Nature (London)
347
,
539
(
1990
).
2.
Y.
Hamada
,
C.
Adachi
,
T.
Tsutsui
, and
S.
Saito
,
Jpn. J. Appl. Phys., Part 1
34
,
1812
(
1992
).
3.
W. Riess, in Organic Materials and Devices, edited by S. Miyata and H. S. Nalwa (Gordon and Breach, Amsterdam, 1997), p. 73.
4.
J. M.
Shi
and
C. W.
Tang
,
Appl. Phys. Lett.
70
,
1665
(
1997
).
5.
Y. Z.
Wang
,
D. D.
Gebler
,
D. K.
Fu
,
T. M.
Swager
, and
A. J.
Epstein
,
Appl. Phys. Lett.
70
,
3215
(
1997
).
6.
D.
Zou
,
M.
Yahio
, and
T.
Tsutsui
,
Appl. Phys. Lett.
72
,
2484
(
1998
).
7.
I. H.
Campbell
,
T. W.
Hagler
,
D. L.
Smith
, and
J. P.
Ferraris
,
Phys. Rev. Lett.
76
,
1900
(
1996
).
8.
I. H.
Campbell
,
M. D.
Joswick
, and
I. D.
Parker
,
Appl. Phys. Lett.
67
,
3171
(
1995
).
9.
S.
Grossmann
,
T.
Weyrauch
,
S.
Saal
, and
W.
Haase
,
Opt. Mater.
9
,
236
(
1998
).
10.
P. L.
Burn
,
A. W.
Grice
,
A.
Tajbakhsh
,
D. D. C.
Bradley
, and
A. C.
Thomas
,
Adv. Mater.
9
,
1171
(
1997
).
11.
F.
Rohlfing
and
D. D. C.
Bradley
,
Chem. Phys.
227
,
133
(
1998
).
12.
F.
Michelotti
,
V.
Taggi
,
M.
Bertolotti
,
T.
Gabler
,
H. H.
Hörhold
, and
A.
Bräuer
,
J. Appl. Phys.
83
,
7886
(
1998
).
13.
N.
Tessler
,
N. T.
Harrison
, and
R. H.
Friend
,
Adv. Mater.
10
,
64
(
1998
).
14.
J.
Gao
,
G.
Yu
, and
A. J.
Heeger
,
Appl. Phys. Lett.
71
,
1293
(
1997
).
15.
J. Rostalski, D. Meissner, C. Giebeler, P. A. Lane, and D. D. C. Bradley (unpublished).
16.
The decay time t can be related to the trap activation energy Etrap by the relation τ=σN〈v〉exp(−Etrap/kBT), where σ is the trap capture cross section, NDOS the density of transport states, 〈v〉 the charge carrier thermal velocity, and the trap degeneracy g=1. We can estimate that N lies between 1020 and 1021cm−3 from conjugation length size and polymer chain density considerations; 〈v〉=(3kBT)1/2 lies between 10 and 103 cm/s from estimates of the polaron effective mass; and that σcap lies between 10−14 and 10−13cm2. Then, we can estimate Etrap=0.6±0.1 eV.
17.
Y.
Kaminorz
,
E.
Smela
,
O.
Inganas
, and
L.
Brehmer
,
Adv. Mater.
10
,
765
(
1998
).
18.
A.
Bernsten
,
Y.
Croonen
,
C.
Liedenbaum
,
H.
Schoo
,
R. J.
Visser
,
J.
Vleggaar
, and
P.
vandeWeijer
,
Opt. Mater.
9
,
125
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.