Tapping-mode atomic force microscopy (TM-AFM) is a powerful tool to study soft biological samples. Higher eigenmodes of the vibrating cantilever offer enhanced signal and smaller time constants increasing the sensitivity of the tapping probe as compared to conventional TM-AFM. The first five eigenmodes of a v-shaped silicon cantilever were investigated with respect to their suitability for imaging. Stable imaging was possible in the first and third modes. Phase imaging in the third mode was extremely sensitive to surface inhomogeneities and surface contamination particles not visible in standard TM-AFM.

1.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
2.
M.
Radmacher
,
M.
Fritz
, and
P. K.
Hansma
,
Biophys. J.
69
,
264
(
1995
).
3.
R. W.
Stark
,
T.
Drobek
,
M.
Weth
,
J.
Fricke
, and
W. M.
Heckl
,
Ultramicroscopy
75
,
161
(
1998
).
4.
C. D.
Frisbie
,
L. F.
Rozsnyai
,
A.
Noy
,
M. S.
Wrighton
, and
C. M.
Lieber
,
Science
265
,
2071
(
1994
).
5.
Q.
Zhong
,
D.
Inniss
,
K.
Kjoller
, and
V. B.
Elings
,
Surf. Sci. Lett.
290
,
L688
(
1993
).
6.
S. N.
Magonov
,
V.
Elings
, and
M. H.
Whangbo
,
Surf. Sci. Lett.
375
,
L385
(
1997
).
7.
R. G.
Winkler
,
J. P.
Spatz
,
S.
Sheiko
,
M.
Möller
,
P.
Reineker
, and
O.
Marti
,
Phys. Rev. B
54
,
8908
(
1996
).
8.
J.
Tamayo
and
R.
Garcı́a
,
Langmuir
12
,
4430
(
1996
).
9.
N. A.
Burnham
,
O. P.
Behrend
,
F.
Ouvelvey
,
G.
Gremaud
,
P. J.
Gallo
,
D.
Gourdon
,
E.
Dupas
,
A. J.
Kulik
,
H. M.
Pollock
, and
G. A. D.
Briggs
,
Nanotechnology
8
,
67
(
1997
).
10.
J. P.
Cleveland
,
B.
Anczykowski
,
A. E.
Schmid
, and
V. B.
Elings
,
Appl. Phys. Lett.
72
,
2613
(
1998
).
11.
J.
Tamayo
and
R.
Garcı́a
,
Appl. Phys. Lett.
73
,
2926
(
1998
).
12.
S.
Thalhammer
,
R. W.
Stark
,
S.
Müller
,
J.
Wienberg
, and
W. M.
Heckl
,
J. Struct. Biol.
119
,
232
(
1997
).
13.
R. W.
Stark
,
S.
Thalhammer
,
J.
Wienberg
, and
W. M.
Heckl
,
Appl. Phys. A: Mater. Sci. Process.
66
,
S579
(
1998
).
14.
M.
Hoummady
and
E.
Farnault
,
Appl. Phys. A: Mater. Sci. Process.
66
,
S361
(
1998
).
15.
S. C.
Minne
,
S. R.
Manalis
,
A.
Atalar
, and
C. F.
Quate
,
Appl. Phys. Lett.
68
,
1427
(
1996
).
16.
Uncoated silicon cantilever SC 11, nominal spring constant k=3.0 N/m, eigenfrequency f0=40 kHz, L=200 μm, W=40 μm, T=2.0 μm (NT-MDT, Russia).
17.
Topometrix Explorer, 130 μm dry scanner (Topometrix GmbH, Darmstadt, Germany).
18.
Function generator DS 345 and lock-in amplifier SR 844, Stanford Research Systems.
19.
ANSYS 5.4 running on an IBM SP2 workstation at the Leibnitz Rechenzentrum, München, Germany.
20.
Landolt-Börnstein, edited by K. H. Hellwege and A. M. Hellwege, New York (1979), p. 11.
21.
T. Drobek, R. W. Stark, M. Gräber, and W. M. Heckl (unpublished).
22.
This can be verified by Fourier transformation.
23.
J. P.
Hunt
and
D.
Sarid
,
Appl. Phys. Lett.
72
,
2969
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.