The ideal performance of bulk, quantum well, and superlattice active regions for III–V interband midinfrared lasers are compared according to the maximum net gain per unit current density. Based on this figure of merit, which is appropriate for high-power as well as near-threshold operation, InAsSb quantum well active regions should have an order of magnitude lower threshold current than bulk InAs at room temperature. Optimized four-layer superlattices based on the InAs/GaInSb material system, however, should have two to ten times lower threshold currents than the quantum well active regions. Optimal thicknesses for these active regions were evaluated assuming a separate confinement region design. For the four-layer superlattices the optimal thickness is substantially thinner than has been commonly grown: 3 periods rather than 40 periods.

1.
H. K.
Choi
,
G. W.
Turner
,
M. J.
Manfra
, and
M. K.
Connors
,
Appl. Phys. Lett.
68
,
2936
(
1996
).
2.
S. R.
Kurtz
,
A. A.
Allerman
, and
R. M.
Biefeld
,
Appl. Phys. Lett.
70
,
3188
(
1997
).
3.
T.
Ashley
,
C. T.
Elliott
,
R.
Jefferies
,
A. D.
Johnson
,
G. J.
Pryce
,
A. M.
White
, and
M.
Carroll
,
Appl. Phys. Lett.
70
,
931
(
1997
).
4.
D. H.
Chow
,
R. H.
Miles
,
T. C.
Hasenberg
,
A. R.
Kost
,
Y. H.
Zhang
,
H. L.
Dunlap
, and
L.
West
,
Appl. Phys. Lett.
67
,
3700
(
1995
);
T. C.
Hasenberg
,
R. H.
Miles
,
A. R.
Kost
, and
L.
West
,
IEEE J. Quantum Electron.
33
,
1403
(
1997
).
5.
J. I.
Malin
,
J. R.
Meyer
,
C. L.
Felix
,
J. R.
Lindle
,
L.
Goldberg
,
C. A.
Hoffman
, and
F. J.
Bartoli
,
Appl. Phys. Lett.
68
,
2976
(
1996
).
6.
L. J.
Olafsen
,
E. H.
Aifer
,
I.
Vurgaftman
,
W. W.
Bewley
,
C. L.
Felix
,
J. R.
Meyer
,
D.
Zhang
,
C.-H.
Lin
, and
S. S.
Pei
,
Appl. Phys. Lett.
72
,
2370
(
1998
).
7.
J.
Faist
,
F.
Capasso
,
D. L.
Sivco
,
C.
Sirtori
,
A. L.
Hutchinson
, and
A. Y.
Cho
,
Science
264
,
553
(
1994
).
8.
M. E.
Flatté
,
C. H.
Grein
,
H.
Ehrenreich
,
R. H.
Miles
, and
H.
Cruz
,
J. Appl. Phys.
78
,
4552
(
1995
).
9.
C. H.
Grein
,
P. M.
Young
, and
H.
Ehrenreich
,
J. Appl. Phys.
76
,
1940
(
1994
).
10.
See, e.g., L. A Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
11.
D. Z.
Garbuzov
,
R. U.
Martinelli
,
H.
Lee
,
P. K.
York
,
R. J.
Menna
,
J. C.
Connolly
, and
S. Y.
Narayan
,
Appl. Phys. Lett.
69
,
2006
(
1996
).
12.
M. E.
Flatté
,
J. T.
Olesberg
,
S. A.
Anson
,
T. F.
Boggess
,
T. C.
Hasenberg
,
R. H.
Miles
, and
C. H.
Grein
,
Appl. Phys. Lett.
70
,
3212
(
1997
).
13.
M. E.
Flatté
,
T. C.
Hasenberg
,
J. T.
Olesberg
,
S. A.
Anson
,
T. F.
Boggess
,
C.
Yan
, and
D. L.
McDaniel
, Jr.
,
Appl. Phys. Lett.
71
,
3764
(
1997
).
14.
J. R.
Lindle
,
J. R.
Meyer
,
C. A.
Hoffman
,
F. J.
Bartoli
,
G. W.
Turner
, and
H. K.
Choi
,
Appl. Phys. Lett.
67
,
3153
(
1995
).
15.
M. E.
Flatté
,
P. M.
Young
,
L.-H.
Peng
, and
H.
Ehrenreich
,
Phys. Rev. B
53
,
1963
(
1996
).
16.
Parameters for the systems considered come from Physics of Group IV Elements and III–V Compounds, Landolt-Börnstein Vol. III/17a, edited by O. Madelung (Springer, New York, 1982);
Intrinsic Properties of Group IV Elements and III–V, II–VI, and I–VII Compounds, Landolt-Börnstein Vol. III/22a, edited by O. Madelung (Springer, New York, 1987);
many of them are tabulated in Ref. 8.
17.
J. T.
Olesberg
,
S. A.
Anson
,
S. W.
McCahon
,
M. E.
Flaté
,
T. F.
Boggess
,
D. H.
Chow
, and
T. C.
Hasenberg
,
Appl. Phys. Lett.
72
,
229
(
1998
).
18.
See, e.g.,
S. W.
McCahon
,
S. A.
Anson
,
D.-J.
Jang
,
M. E.
Flatté
,
T. F.
Boggess
,
D. H.
Chow
,
T. C.
Hasenberg
, and
C. H.
Grein
,
Appl. Phys. Lett.
68
,
2135
(
1996
).
19.
The density convention used here for quantum well systems is to include both the barrier and well material in the thickness of the material.
20.
K. L.
Vodopyanov
,
H.
Graener
,
C. C.
Phillips
, and
T. J.
Tate
,
Phys. Rev. B
46
,
13194
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.