We describe the adsorption of H on Si(114)-(2×1) as characterized by scanning tunneling microscopy and first-principles calculations. Like Si(001)—and despite the relative complexity of the (114) structure—a well-ordered, low-defect-density monohydride surface forms at ∼400 °C. Surprisingly, the clean surface reconstruction is essentially maintained on the (2×1) monohydride surface, composed of dimers, rebonded double-layer steps, and nonrebonded double-layer steps, with each surface atom terminated by a single H. This H-passivated surface can also be easily and uniformly patterned by selectively desorbing the H with low-voltage electrons.

1.
S.
Rujirawat
,
L. A.
Almeida
,
Y. P.
Chen
, and
S.
Sivananthan
,
Appl. Phys. Lett.
71
,
1810
(
1997
).
2.
P.
Waltereit
,
J. M.
Fernández
,
S.
Kaya
, and
T. J.
Thorton
,
Appl. Phys. Lett.
72
,
2262
(
1998
).
3.
M. J.
Jurkovic
,
J.
Alperin
,
Q.
Du
,
W. I.
Wang
, and
M. F.
Chang
,
J. Vac. Sci. Technol. B
16
,
1401
(
1998
).
4.
R. M.
Sieg
,
S. A.
Ringel
,
S. M.
Ting
,
S. B.
Samavedam
,
M.
Currie
,
T.
Langdo
, and
E. A.
Fitzgerald
,
J. Vac. Sci. Technol. B
16
,
1471
(
1998
).
5.
J.
Dabrowski
,
H.-J.
Mussig
, and
G.
Wolff
,
Surf. Sci.
331-333
,
1022
(
1995
).
6.
A. A.
Baski
,
S. C.
Erwin
, and
L. J.
Whitman
,
Science
269
,
1556
(
1995
).
7.
S. C.
Erwin
,
A. A.
Baski
, and
L. J.
Whitman
,
Phys. Rev. Lett.
77
,
687
(
1996
).
8.
A. A.
Baski
,
S. C.
Erwin
, and
L. J.
Whitman
,
Surf. Sci.
392
,
69
(
1997
).
9.
T.
Hsu
,
B.
Anthony
,
R.
Qian
,
J.
Irby
,
S.
Banerjee
,
A.
Tasch
,
S.
Lin
,
H.
Marcus
, and
C.
Magee
,
J. Electron. Mater.
20
,
279
(
1991
).
10.
J. W.
Lyding
,
K.
Hess
, and
I. C.
Kizilyalli
,
Appl. Phys. Lett.
68
,
2526
(
1996
).
11.
S.-J.
Kahng
,
Y. H.
Ha
,
J.-Y.
Park
,
S.
Kim
,
D. W.
Moon
, and
Y.
Kuk
,
Phys. Rev. Lett.
80
,
4931
(
1998
).
12.
J. W.
Lyding
,
T.-C.
Shen
,
J. S.
Hubacek
,
J. R.
Tucker
, and
G. C.
Abeln
,
Appl. Phys. Lett.
64
,
2010
(
1994
).
13.
T.-C.
Shen
,
C.
Wang
,
G. C.
Abeln
,
J. R.
Tucker
,
J. W.
Lyding
,
P.
Avouris
, and
R. E.
Walkup
,
Science
268
,
1590
(
1995
).
14.
D. P.
Adams
,
T. M.
Mayer
, and
B. S.
Swartzentruber
,
J. Vac. Sci. Technol. B
14
,
1642
(
1996
).
15.
T.-C.
Shen
,
C.
Wang
, and
J. R.
Tucker
,
Phys. Rev. Lett.
78
,
1271
(
1997
).
16.
J. J.
Boland
,
Adv. Phys.
42
,
129
(
1993
).
17.
J. H.
Wilson
,
P. D.
Scott
,
J. B.
Pethica
, and
J.
Knall
,
J. Phys.: Condens. Matter
3
,
S133
(
1991
).
18.
A. A.
Baski
and
L. J.
Whitman
,
J. Vac. Sci. Technol. A
13
,
1469
(
1995
).
19.
F.
Owman
and
P.
Martensson
,
Surf. Sci.
303
,
L367
(
1994
).
20.
M.
Bockstedte
,
A.
Kley
, and
M.
Scheffler
,
Comput. Phys. Commun.
107
,
187
(
1997
).
21.
S.
Maruno
,
H.
Iwasaki
,
K.
Horioka
,
L.
Sung-te
, and
S.
Nakamura
,
Phys. Rev. B
27
,
4110
(
1983
).
22.
Y. J.
Chabal
and
K.
Raghavachari
,
Phys. Rev. Lett.
54
,
1055
(
1985
).
23.
S. M.
Gates
,
R. R.
Kunz
, and
C. M.
Greenlief
,
Surf. Sci.
207
,
364
(
1989
).
24.
C. C.
Cheng
and
J. T.
Yates
, Jr.
,
Phys. Rev. B
43
,
4041
(
1991
).
25.
J. E.
Northrup
,
Phys. Rev. B
44
,
1419
(
1991
).
26.
D. T.
Jiang
,
G. W.
Anderson
,
K.
Griffiths
,
T. K.
Sham
, and
P. R.
Norton
,
Phys. Rev. B
48
,
4952
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.