We report a detailed study of the morphology of pits formed by corrosion of aluminum thin films using an in-plane light scattering technique. We show that the corrosion front of the Al thin film can be treated as a quasi-two-level random rough surface. Based on an elastic diffraction theory, we are able to determine the average depth, the area, and the density of pits, as well as the fractal dimension of the surface. Using the advantages of light scattering, one can quantify the morphological parameters of corroded films in situ and nondestructively.

1.
M. G. Fontana, Corrosion Engineering, 3rd ed. (McGraw–Hill, New York, 1986).
2.
L.
Balázs
and
J.-F.
Gouyet
,
Mater. Res. Soc. Symp. Proc.
407
,
281
(
1996
), and references therein.
3.
J. M.
Costa
,
F.
Sagués
, and
M.
Vilarrasa
,
Corros. Sci.
32
,
665
(
1991
).
4.
T.
Nagatani
,
Phys. Rev. A
45
,
2480
(
1992
);
T.
Nagatani
,
Phys. Rev. A
,
6985
(
1992
);
T.
Nagatani
,
Phys. Rev. Lett.
68
,
1616
(
1992
).
5.
P.
Meakin
,
T.
Jo/ssang
, and
J.
Feder
,
Phys. Rev. E
48
,
2906
(
1993
).
6.
R.
Reigada
,
F.
Sagués
, and
J. M.
Costa
,
J. Chem. Phys.
101
,
2329
(
1994
).
7.
O.
Hunderi
,
Corros. Sci.
19
,
621
(
1979
);
O.
Lunder
,
K.
Nisancioglu
, and
O.
Hunderi
,
Corros. Sci.
24
,
965
(
1984
).
8.
Y.-P.
Zhao
,
Y.-J.
Wu
,
H.-N.
Yang
,
G.-C.
Wang
, and
T.-M.
Lu
,
Appl. Phys. Lett.
69
,
221
(
1996
).
9.
Y.-P.
Zhao
,
H.-N.
Yang
,
G.-C.
Wang
, and
T.-M.
Lu
,
Appl. Phys. Lett.
68
,
3063
(
1996
).
10.
Y.-P.
Zhao
,
Irene
Wu
,
C.-F.
Cheng
,
Ueyn
Block
,
G.-C.
Wang
, and
T.-M.
Lu
,
J. Appl. Phys.
84
,
2571
(
1998
).
11.
E. L.
Church
,
Appl. Opt.
27
,
1518
(
1988
).
12.
H.-N. Yang, G.-C. Wang, and T.-M. Lu, Diffraction from Rough Surfaces and Dynamic Growth Fronts (World Scientific, Singapore, 1993), p. 94.
13.
P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Macmillan, New York, 1963).
14.
H.-N.
Yang
,
K.
Fang
,
G.-C.
Wang
, and
T.-M.
Lu
,
Europhys. Lett.
19
,
215
(
1992
);
H.-N.
Yang
,
G.-C.
Wang
, and
T.-M.
Lu
,
Phys. Rev. B
51
,
17932
(
1995
).
15.
The relation between the density-density correlation function, c(r) and P11(r) is 2πrc(r)Δr=P11(r)−P11(r+Δr). Therefore cr∝rD−2exp[−(r/ξ)D]. According to Vicsek [T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989), p. 23], D is the fractal dimension.
16.
S. K.
Sinha
,
Y. P.
Feng
,
C. A.
Melendres
,
D. D.
Lee
,
T. P.
Russell
,
S. K.
Satija
,
E. B.
Sirota
, and
M. K.
Sanyal
,
Physica A
231
,
99
(
1996
);
Y. P.
Feng
,
S. K.
Sinha
,
C. A.
Melendres
, and
D. D.
Lee
,
Physica B
221
,
251
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.