Using a first-principles band structure method we have theoretically studied the effects of Ga additions on the electronic and structural properties of CuInSe2. We find that (i) with increasing xGa, the valence band maximum of CuIn1−xGaxSe2 (CIGS) decreases slightly, while the conduction band minimum (and the band gap) of CIGS increases significantly, (ii) the acceptor formation energies are similar in both CuInSe2 (CIS) and CuGaSe2 (CGS), but the donor formation energy is larger in CGS than in CIS, (iii) the acceptor transition levels are shallower in CGS than in CIS, but the GaCu donor level in CGS is much deeper than the InCu donor level in CIS, and (iv) the stability domain of the chalcopyrite phase increases with respect to ordered defect compounds. Our results are compared with available experimental observations.

1.
B.
Schumann
,
H.
Neumann
,
A.
Tempel
,
G.
Kuhn
, and
E.
Nowak
,
Kris. Techn.
15
,
71
(
1980
);
W.
Horig
,
W.
Moller
,
H.
Neumann
,
E.
Reccius
, and
G.
Kuhn
,
Phys. Status Solidi B
92
,
K1
(
1979
).
2.
A. Zunger, in Proceedings of the 17th IEEE Photovoltaic Specialists Conference, edited by E. L. Ralph (IEEE, New York, 1984), p. 755.
3.
J. Hedstrom, H. J. Olsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, and H. W. Schock, Proceedings of the 23rd IEEE Photovoltaic Specialists Conference (IEEE, New York, 1993), p. 364.
4.
A. M.
Gabor
,
J. R.
Tuttle
,
D. S.
Albin
,
M. A.
Contreras
,
R.
Noufi
, and
A. M.
Hermann
,
Appl. Phys. Lett.
65
,
198
(
1994
).
5.
D. S.
Albin
,
J. J.
Carapella
,
J. R.
Tuttle
, and
R.
Noufi
,
Mater. Res. Soc. Symp. Proc.
228
,
267
(
1991
).
6.
S.-H.
Wei
and
A.
Zunger
,
J. Appl. Phys.
78
,
3846
(
1995
).
7.
D. J. Schroeder, J. L. Hernandez, G. D. Berry, and A. A. Rockett, in Proceedings of the 11th International Conference on Ternary and Multinary Compounds, edited by R. D. Tomlinson (AIP, New York, to be published).
8.
R. Herberholz, H. W. Schock, U. Rau, J. W. Werner, T. Haalboom, T. Godecke, F. Ernst, C. Beiharz, K. W. Benz, and D. Cahen, in Proceedings of the 26th IEEE Photovoltaic Specialists Conference, edited by P. A. Basore (IEEE, New York, 1998), p. 323.
9.
W. N. Shafarman, R. Klenk, and B. E. McCandless, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference, edited by E. Boes (IEEE, New York, 1996), p. 763.
10.
M. A. Contreras, H. Wiesner, D. Niles, K. Ramanathan, R. Matson, J. Tuttle, J. Keane, and R. Noufi, in Ref. 9, p. 809.
11.
T.
Negami
,
N.
Kohara
,
M.
Nishitani
,
T.
Wada
, and
T.
Hirao
,
Appl. Phys. Lett.
67
,
825
(
1997
).
12.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
13.
S.-H.
Wei
and
H.
Krakauer
,
Phys. Rev. Lett.
55
,
1200
(
1985
);
D. J. Singh, Planewaves, Pseudopotentials, and the LAPW Method (Kluwer, Boston, 1994).
14.
S. B.
Zhang
,
S.-H.
Wei
,
A.
Zunger
, and
H.
Katayama-Yoshida
,
Phys. Rev. B
57
,
9642
(
1998
).
15.
K.-H.
Goetz
,
D.
Bimberg
,
H.
Jurgensen
,
J.
Selders
,
A. V.
Solomonov
,
G. F.
Glinskii
, and
M.
Razhegi
,
J. Appl. Phys.
54
,
4543
(
1983
).
16.
W.
Walukiewicz
,
J. Vac. Sci. Technol. B
5
,
1062
(
1987
);
S. B.
Zhang
,
S.-H.
Wei
, and
A.
Zunger
,
J. Appl. Phys.
83
,
3192
(
1988
).
17.
A.
Franceschetti
,
S.-H.
Wei
, and
A.
Zunger
,
Phys. Rev. B
50
,
8094
(
1994
).
18.
We use here the notations for the cubic (zinc-blende) structure. If one uses the notations for the tetragonal chalcopyrite structure, a factor of 2 should be multiplied on the z component of the cubic notation. For example, [111] in the cubic notation is [112] in the tetragonal notation.
This content is only available via PDF.
You do not currently have access to this content.